Inference in Linear Regression Models with Many Covariates and Heteroscedasticity

The linear regression model is widely used in empirical work in economics, statistics, and many other disciplines. Researchers often include many covariates in their linear model specification in a...

[1]  Francisco Cribari‐Neto,et al.  A sequence of improved standard errors under heteroskedasticity of unknown form , 2011 .

[2]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[3]  A. Hoffman,et al.  On bounds for eigenvalues of real symmetric matrices , 1981 .

[4]  ALTERNATIVE ASYMPTOTICS AND THE PARTIALLY LINEAR MODEL WITH MANY REGRESSORS , 2016, Econometric Theory.

[5]  Ulrich K. Müller,et al.  Linear regression with many controls of limited explanatory power , 2021, Quantitative Economics.

[6]  A. Belloni,et al.  Inference on Treatment Effects after Selection Amongst High-Dimensional Controls , 2011, 1201.0224.

[7]  On the asymptotic theory for least squares series : pointwise and uniform results , 2013 .

[8]  R. Carroll,et al.  A Note on the Efficiency of Sandwich Covariance Matrix Estimation , 2001 .

[9]  Anil K. Bera,et al.  On some heteroskedasticity-robust estimators of variance–covariance matrix of the least-squares estimators , 2002 .

[10]  A. Chesher,et al.  The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator , 1987 .

[11]  Max H. Farrell,et al.  Efficient Estimation of the Dose–Response Function Under Ignorability Using Subclassification on the Covariates , 2011 .

[12]  Edward Vytlacil,et al.  Estimating Marginal Returns to Education , 2010, The American economic review.

[13]  J. Varah A lower bound for the smallest singular value of a matrix , 1975 .

[14]  A. Belloni,et al.  Program evaluation and causal inference with high-dimensional data , 2013, 1311.2645.

[15]  M. Farrell Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations , 2015 .

[16]  James G. MacKinnon,et al.  Thirty Years of Heteroskedasticity-Robust Inference , 2013 .

[17]  Francisco Cribari-Neto,et al.  Improved heteroscedasticity‐consistent covariance matrix estimators , 2000 .

[18]  Matias D. Cattaneo,et al.  ALTERNATIVE ASYMPTOTICS AND THE PARTIALLY LINEAR MODEL WITH MANY REGRESSORS , 2015, Econometric Theory.

[19]  P. Bickel,et al.  BOOTSTRAPPING REGRESSION MODELS WITH MANY PARAMETERS , 2008 .

[20]  Christian Hansen,et al.  High-Dimensional Methods and Inference on Structural and Treatment Effects , 2013 .

[21]  W. G. Cochran The effectiveness of adjustment by subclassification in removing bias in observational studies. , 1968, Biometrics.

[22]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[23]  Jinyong Hahn,et al.  When to Control for Covariates? Panel Asymptotics for Estimates of Treatment Effects , 2004, Review of Economics and Statistics.

[24]  Ulrich K. Müller RISK OF BAYESIAN INFERENCE IN MISSPECIFIED MODELS, AND THE SANDWICH COVARIANCE MATRIX , 2013 .

[25]  J. Fox Bootstrapping Regression Models , 2002 .

[26]  Shu-rong Zheng,et al.  Inference on multiple correlation coefficients with moderately high dimensional data , 2014 .

[27]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[28]  Roger Koenker,et al.  Asymptotic Theory and Econometric Practice , 1988 .

[29]  Inference in Misspecified Models , 2011 .

[30]  H. White,et al.  Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties☆ , 1985 .

[31]  E. Mammen Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .

[32]  Kengo Kato,et al.  Some new asymptotic theory for least squares series: Pointwise and uniform results , 2012, 1212.0442.

[33]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[34]  Xiaohong Chen,et al.  Optimal Uniform Convergence Rates and Asymptotic Normality for Series Estimators Under Weak Dependence and Weak Conditions , 2014, 1412.6020.

[35]  C. F. Wu JACKKNIFE , BOOTSTRAP AND OTHER RESAMPLING METHODS IN REGRESSION ANALYSIS ' BY , 2008 .

[36]  Patrick M. Kline,et al.  Higher Order Properties of the Wild Bootstrap Under Misspecification , 2011 .

[37]  J. Stock,et al.  Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression , 2006 .

[38]  M. Farrell Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations , 2013, 1309.4686.

[39]  Max H. Farrell,et al.  Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators☆ , 2013 .

[40]  Jun Shao,et al.  Heteroscedasticity-Robustness of Jackknife Variance Estimators in Linear Models , 1987 .

[41]  J. S. Long,et al.  Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model , 2000 .

[42]  Sílvia Gonçalves,et al.  Bootstrap Standard Error Estimates for Linear Regression , 2005 .

[43]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[44]  Victor Chernozhukov,et al.  Inference on Treatment Effects after Selection Amongst High-Dimensional Controls , 2011 .

[45]  P. Bickel,et al.  On robust regression with high-dimensional predictors , 2013, Proceedings of the National Academy of Sciences.

[46]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[47]  Xiaohong Chen,et al.  Recent advances and future directions in causality, prediction, and specification analysis , 2013 .

[48]  Stephen G. Donald,et al.  Series estimation of semilinear models , 1994 .

[49]  A. Chesher Hajek Inequalities, Measures of Leverage and the Size of Heteroskedasticity Robust Wald Tests , 1989 .

[50]  Guido W. Imbens,et al.  Inference for Misspecified Models With Fixed Regressors , 2014 .

[51]  Stanislav Anatolyev,et al.  Inference in Regression Models with Many Regressors , 2009 .