Contact-invariant optimization for hand manipulation

We present a method for automatic synthesis of dexterous hand movements, given only high-level goals specifying what should happen to the object being manipulated. Results are presented on a wide range of tasks including grasping and picking up objects, twirling them between the fingers, tossing and catching, drawing. This work is an extension of the recent contact-invariant optimization (CIO) method, which introduced auxiliary decision variables directly specifying when and where contacts should occur, and optimized these variables together with the movement trajectory. Our contribution here is extending the unique contact model used in CIO which was specific to locomotion tasks, as well as applying the extended method systematically to hand manipulation.

[1]  R. Howe,et al.  Human grasp choice and robotic grasp analysis , 1990 .

[2]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[3]  J. A. Coelho,et al.  Online grasp synthesis , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[4]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[5]  J. F. Soechting,et al.  Postural Hand Synergies for Tool Use , 1998, The Journal of Neuroscience.

[6]  F. Sebastian Grassia,et al.  Practical Parameterization of Rotations Using the Exponential Map , 1998, J. Graphics, GPU, & Game Tools.

[7]  E. Bizzi,et al.  The construction of movement by the spinal cord , 1999, Nature Neuroscience.

[8]  Peter K. Allen,et al.  Examples of 3D grasp quality computations , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[9]  Allison M. Okamura,et al.  An overview of dexterous manipulation , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[11]  Auke Jan Ijspeert,et al.  A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander , 2001, Biological Cybernetics.

[12]  Emilio Bizzi,et al.  Combinations of muscle synergies in the construction of a natural motor behavior , 2003, Nature Neuroscience.

[13]  Michael Vande Weghe,et al.  The ACT Hand: design of the skeletal structure , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[14]  E. Todorov,et al.  Analysis of the synergies underlying complex hand manipulation , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  Peter K. Allen,et al.  Graspit! A versatile simulator for robotic grasping , 2004, IEEE Robotics & Automation Magazine.

[16]  Katsu Yamane,et al.  Synthesizing animations of human manipulation tasks , 2004, SIGGRAPH 2004.

[17]  Victor B. Zordan,et al.  Physically based grasping control from example , 2005, SCA '05.

[18]  D. B. Lockhart,et al.  Optimal sensorimotor transformations for balance , 2007, Nature Neuroscience.

[19]  Jessica K. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, ACM Trans. Graph..

[20]  Francisco J Valero-Cuevas,et al.  Neural Control of Motion-to-Force Transitions with the Fingertip , 2008, The Journal of Neuroscience.

[21]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, SIGGRAPH 2008.

[22]  C. Karen Liu Synthesis of interactive hand manipulation , 2008, SCA '08.

[23]  J. Randall Flanagan,et al.  Coding and use of tactile signals from the fingertips in object manipulation tasks , 2009, Nature Reviews Neuroscience.

[24]  C. Karen Liu,et al.  Optimization-based interactive motion synthesis , 2009, ACM Trans. Graph..

[25]  Abderrahmane Kheddar,et al.  Potential field guide for humanoid multicontacts acyclic motion planning , 2009, ICRA.

[26]  M. Tresch,et al.  The case for and against muscle synergies , 2022 .

[27]  P. Strick,et al.  Subdivisions of primary motor cortex based on cortico-motoneuronal cells , 2009, Proceedings of the National Academy of Sciences.

[28]  Matei T. Ciocarlie,et al.  Hand Posture Subspaces for Dexterous Robotic Grasping , 2009, Int. J. Robotics Res..

[29]  C. Karen Liu Dextrous manipulation from a grasping pose , 2009, SIGGRAPH 2009.

[30]  David J. Fleet,et al.  Estimating contact dynamics , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[31]  Zoran Popović,et al.  Contact-aware nonlinear control of dynamic characters , 2009, SIGGRAPH 2009.

[32]  Yuval Tassa,et al.  Stochastic Complementarity for Local Control of Discontinuous Dynamics , 2010, Robotics: Science and Systems.

[33]  Zexiang Li,et al.  Sampling-based finger gaits planning for multifingered robotic hand , 2010, Auton. Robots.

[34]  Emanuel Todorov,et al.  A convex, smooth and invertible contact model for trajectory optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[35]  C. Karen Liu,et al.  Synthesis of detailed hand manipulations using contact sampling , 2012, ACM Trans. Graph..

[36]  Zoran Popovic,et al.  Discovery of complex behaviors through contact-invariant optimization , 2012, ACM Trans. Graph..

[37]  Russ Tedrake,et al.  Direct Trajectory Optimization of Rigid Body Dynamical Systems through Contact , 2012, WAFR.

[38]  Francisco J. Valero Cuevas,et al.  Challenges and New Approaches to Proving the Existence of Muscle Synergies of Neural Origin , 2012, PLoS Comput. Biol..