Maximal bifix decoding

We consider a class of sets of words which is a natural common generalization of Sturmian sets and of interval exchange sets. This class of sets consists of the uniformly recurrent tree sets, where the tree sets are defined by a condition on the possible extensions of bispecial factors. We prove that this class is closed under maximal bifix decoding. The proof uses the fact that the class is also closed under decoding with respect to return words.

[1]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[2]  Fabien Durand,et al.  Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.

[3]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.

[4]  Zhang Yiping,et al.  The structure of invertible substitutions on a three-letter alphabet , 2003 .

[5]  Erwan Lanneau,et al.  Dynamics and geometry of the Rauzy–Veech induction for quadratic differentials , 2007, Ergodic Theory and Dynamical Systems.

[6]  Sébastien Ferenczi,et al.  Languages of k-interval exchange transformations , 2008 .

[7]  Karel Klouda,et al.  Bispecial factors in circular non-pushy D0L languages , 2012, Theor. Comput. Sci..

[8]  Jacques Justin,et al.  Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..

[9]  Dominique Perrin,et al.  Codes and Automata (Encyclopedia of Mathematics and its Applications) , 2009 .

[10]  M. Keane Interval exchange transformations , 1975 .

[11]  M. Boshernitzan,et al.  A unique ergodicity of minimal symbolic flows with linear block growth , 1984 .

[12]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[13]  Dominique Perrin,et al.  Bifix codes and interval exchanges , 2014, 1408.0389.

[14]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[15]  Julien Cassaigne,et al.  Complexité et facteurs spéciaux , 1997 .

[16]  P. Cohn Free rings and their relations , 1973 .

[17]  C. Caramanis What is ergodic theory , 1963 .

[18]  Sébastien Ferenczi,et al.  Weak mixing and eigenvalues for Arnoux-Rauzy sequences , 2008 .

[19]  Laurent Vuillon,et al.  Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..

[20]  Christophe Reutenauer,et al.  Acyclic, connected and tree sets , 2013, Monatshefte für Mathematik.

[21]  Sébastien Ferenczi,et al.  Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.

[22]  TanBo,et al.  THE STRUCTURE OF INVERTIBLE SUBSTITUTIONS ON A THREE-LETTER ALPHABET , 2003 .

[23]  I. P. Kornfelʹd,et al.  Ergodic Theory , 1963 .

[24]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[25]  V. Arnold SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .

[26]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[27]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[28]  Julien Leroy,et al.  An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2 , 2014, Discret. Math. Theor. Comput. Sci..

[29]  Anton Zorich,et al.  Deviation for interval exchange transformations , 1997, Ergodic Theory and Dynamical Systems.

[30]  Dominique Perrin,et al.  The finite index basis property , 2013, 1305.0127.

[31]  Dominique Perrin,et al.  Codes and Automata , 2009, Encyclopedia of mathematics and its applications.

[32]  Dominique Perrin,et al.  Two-sided Rauzy induction , 2013 .

[33]  Julien Leroy,et al.  An $S$-adic characterization of minimal subshifts with first difference of complexity $1 \leq p(n+1) - p(n) \leq 2$ , 2013, 1305.0434.

[34]  Julien Leroy,et al.  Do the Properties of an S-adic Representation Determine Factor Complexity? , 2013 .

[35]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[36]  Jean Berstel,et al.  Bifix codes and Sturmian words , 2010, ArXiv.

[37]  Dominique Perrin,et al.  Bifix codes and the finite index basis property , 2013, ArXiv.

[38]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .