Maximal bifix decoding
暂无分享,去创建一个
Dominique Perrin | Christophe Reutenauer | Clelia de Felice | Valérie Berthé | Francesco Dolce | Julien Leroy | Giuseppina Rindone | C. Reutenauer | D. Perrin | V. Berthé | F. Dolce | J. Leroy | G. Rindone | C. Felice
[1] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[2] Fabien Durand,et al. Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.
[3] Ethan M. Coven,et al. Sequences with minimal block growth II , 1973, Mathematical systems theory.
[4] Zhang Yiping,et al. The structure of invertible substitutions on a three-letter alphabet , 2003 .
[5] Erwan Lanneau,et al. Dynamics and geometry of the Rauzy–Veech induction for quadratic differentials , 2007, Ergodic Theory and Dynamical Systems.
[6] Sébastien Ferenczi,et al. Languages of k-interval exchange transformations , 2008 .
[7] Karel Klouda,et al. Bispecial factors in circular non-pushy D0L languages , 2012, Theor. Comput. Sci..
[8] Jacques Justin,et al. Episturmian words: a survey , 2008, RAIRO Theor. Informatics Appl..
[9] Dominique Perrin,et al. Codes and Automata (Encyclopedia of Mathematics and its Applications) , 2009 .
[10] M. Keane. Interval exchange transformations , 1975 .
[11] M. Boshernitzan,et al. A unique ergodicity of minimal symbolic flows with linear block growth , 1984 .
[12] Ethan M. Coven,et al. Sequences with minimal block growth , 2005, Mathematical systems theory.
[13] Dominique Perrin,et al. Bifix codes and interval exchanges , 2014, 1408.0389.
[14] Jacques Sakarovitch,et al. Elements of Automata Theory , 2009 .
[15] Julien Cassaigne,et al. Complexité et facteurs spéciaux , 1997 .
[16] P. Cohn. Free rings and their relations , 1973 .
[17] C. Caramanis. What is ergodic theory , 1963 .
[18] Sébastien Ferenczi,et al. Weak mixing and eigenvalues for Arnoux-Rauzy sequences , 2008 .
[19] Laurent Vuillon,et al. Return words in Sturmian and episturmian words , 2000, RAIRO Theor. Informatics Appl..
[20] Christophe Reutenauer,et al. Acyclic, connected and tree sets , 2013, Monatshefte für Mathematik.
[21] Sébastien Ferenczi,et al. Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.
[22] TanBo,et al. THE STRUCTURE OF INVERTIBLE SUBSTITUTIONS ON A THREE-LETTER ALPHABET , 2003 .
[23] I. P. Kornfelʹd,et al. Ergodic Theory , 1963 .
[24] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[25] V. Arnold. SMALL DENOMINATORS AND PROBLEMS OF STABILITY OF MOTION IN CLASSICAL AND CELESTIAL MECHANICS , 1963 .
[26] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[27] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[28] Julien Leroy,et al. An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2 , 2014, Discret. Math. Theor. Comput. Sci..
[29] Anton Zorich,et al. Deviation for interval exchange transformations , 1997, Ergodic Theory and Dynamical Systems.
[30] Dominique Perrin,et al. The finite index basis property , 2013, 1305.0127.
[31] Dominique Perrin,et al. Codes and Automata , 2009, Encyclopedia of mathematics and its applications.
[32] Dominique Perrin,et al. Two-sided Rauzy induction , 2013 .
[33] Julien Leroy,et al. An $S$-adic characterization of minimal subshifts with first difference of complexity $1 \leq p(n+1) - p(n) \leq 2$ , 2013, 1305.0434.
[34] Julien Leroy,et al. Do the Properties of an S-adic Representation Determine Factor Complexity? , 2013 .
[35] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[36] Jean Berstel,et al. Bifix codes and Sturmian words , 2010, ArXiv.
[37] Dominique Perrin,et al. Bifix codes and the finite index basis property , 2013, ArXiv.
[38] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .