Simple 7‐designs with small parameters
暂无分享,去创建一个
[1] Claus-Peter Schnorr,et al. Attacking the Chor-Rivest Cryptosystem by Improved Lattice Reduction , 1995, EUROCRYPT.
[2] Claus-Peter Schnorr,et al. Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.
[3] Donald L. Kreher,et al. The existence of simple 6-(14, 7, 4) designs , 1986, J. Comb. Theory, Ser. A.
[4] Alfred Wassermann,et al. Finding simple t-designs with enumeration techniques , 1998 .
[5] Earl S. Kramer. Some Mutually Disjoint Steiner Systems , 1974, J. Comb. Theory, Ser. A.
[6] Bernd Schmalz,et al. The t-designs with prescribed automorphism group, new simple 6-designs , 1993 .
[7] Mike J. Grannell,et al. A Steiner system S(5, 6, 108) , 1994, Discret. Math..
[8] Donald L. Kreher. An infinite family of (simple) 6‐designs , 1993 .
[9] Terry S. Griggs,et al. Some applications of computers in design theory , 1988 .
[10] Tran van Trung,et al. On the construction oft-designs and the existence of some new infinite families of simple 5-designs , 1986 .
[11] Mike J. Grannell,et al. Some steiner 5‐designs with 108 and 132 points , 1993 .
[12] Dale M. Mesner,et al. T-designs on Hypergraphs , 1976, Discret. Math..
[13] A. Pasini. Geometric and Algebraic Methods in the Classification of Geometries Belonging to Lie Diagrams , 1988 .
[14] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[15] B. Huppert. Endliche Gruppen I , 1967 .
[16] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[17] Adalbert Kerber,et al. The Discovery of Simple 7-Designs with Automorphism Group PTL (2, 32) , 1995, AAECC.