Simple 7‐designs with small parameters

[1]  Claus-Peter Schnorr,et al.  Attacking the Chor-Rivest Cryptosystem by Improved Lattice Reduction , 1995, EUROCRYPT.

[2]  Claus-Peter Schnorr,et al.  Lattice basis reduction: Improved practical algorithms and solving subset sum problems , 1991, FCT.

[3]  Donald L. Kreher,et al.  The existence of simple 6-(14, 7, 4) designs , 1986, J. Comb. Theory, Ser. A.

[4]  Alfred Wassermann,et al.  Finding simple t-designs with enumeration techniques , 1998 .

[5]  Earl S. Kramer Some Mutually Disjoint Steiner Systems , 1974, J. Comb. Theory, Ser. A.

[6]  Bernd Schmalz,et al.  The t-designs with prescribed automorphism group, new simple 6-designs , 1993 .

[7]  Mike J. Grannell,et al.  A Steiner system S(5, 6, 108) , 1994, Discret. Math..

[8]  Donald L. Kreher An infinite family of (simple) 6‐designs , 1993 .

[9]  Terry S. Griggs,et al.  Some applications of computers in design theory , 1988 .

[10]  Tran van Trung,et al.  On the construction oft-designs and the existence of some new infinite families of simple 5-designs , 1986 .

[11]  Mike J. Grannell,et al.  Some steiner 5‐designs with 108 and 132 points , 1993 .

[12]  Dale M. Mesner,et al.  T-designs on Hypergraphs , 1976, Discret. Math..

[13]  A. Pasini Geometric and Algebraic Methods in the Classification of Geometries Belonging to Lie Diagrams , 1988 .

[14]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[15]  B. Huppert Endliche Gruppen I , 1967 .

[16]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[17]  Adalbert Kerber,et al.  The Discovery of Simple 7-Designs with Automorphism Group PTL (2, 32) , 1995, AAECC.