Interaction of chemical and high vascular pressure injury in isolated canine lung.

Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)