Fixed Point Results for Fractal Generation in Extended Jungck–SP Orbit

In this paper, we extend Jungck–SP iteration with <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>–convexity in second sense and define its orbit. We prove the fixed point results for fractal generation via extended iteration and utilize these results to develop algorithms for fractal visualization. Moreover, we present some complex graphs of Julia and Mandelbrot sets in Jungck–SP orbit with <inline-formula> <tex-math notation="LaTeX">$s$ </tex-math></inline-formula>–convexity. We also present some examples to show the variation in images with involved parameters.

[1]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[2]  C A Pickover,et al.  Biom orphs: Computer Displays of Biological Forms Generated from Mathematical Feedback Loops , 1986, Comput. Graph. Forum.

[3]  V. Varadan,et al.  COMMENT: On the symmetries of the Julia sets for the process z==>zp+c , 1987 .

[4]  Robert L. Devaney,et al.  A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .

[5]  Michael F. Barnsley,et al.  Fractals everywhere, 2nd Edition , 1993 .

[6]  N. Kenkel,et al.  Fractals in the Biological Sciences , 1996 .

[7]  N. Cohen,et al.  Fractal antenna applications in wireless telecommunications , 1997, Professional Program Proceedings. Electronic Industries Forum of New England.

[8]  Guangxing Wang,et al.  COMPOSED ACCELERATED ESCAPE TIME ALGORITHM TO CONSTRUCT THE GENERAL MANDELBROT SETS , 2001 .

[9]  Vasileios Drakopoulos,et al.  An overview of parallel visualisation methods for Mandelbrot and Julia sets , 2003, Comput. Graph..

[10]  Mamta Rani,et al.  Superior Mandelbrot Set , 2004 .

[11]  M. Rani,et al.  Superior Julia Set , 2004 .

[12]  Robert L. Devaney,et al.  A Generalized Version of the McMullen Domain , 2008, Int. J. Bifurc. Chaos.

[13]  Sarika Jain,et al.  A new approach to superfractals , 2009 .

[14]  Mamta Rani,et al.  Effect of Stochastic Noise on Superior Julia Sets , 2009, Journal of Mathematical Imaging and Vision.

[15]  Sarika Jain,et al.  Orbit of an image under iterated system , 2011 .

[16]  Bhagwati Prasad,et al.  Fractals via Ishikawa Iteration , 2011 .

[17]  Nicoletta Sala,et al.  Complexity Science, Living Systems, and Reflexing Interfaces: New Models and Perspectives , 2012 .

[18]  Nawab Hussain,et al.  On Rate of Convergence of Jungck-Type Iterative Schemes , 2013 .

[19]  Renu Chugh,et al.  Julia sets and Mandelbrot sets in Noor orbit , 2014, Appl. Math. Comput..

[20]  Rudan Xu,et al.  An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves , 2014, PloS one.

[21]  Shin Min Kang,et al.  Tricorns and Multicorns of -Iteration Scheme , 2015 .

[22]  Shin Min Kang,et al.  S-iteration scheme and polynomiography , 2015 .

[23]  Shin Min Kang,et al.  Fixed point results in the generation of Julia and Mandelbrot sets , 2015 .

[24]  Shin Min Kang,et al.  New Fixed Point Results for Fractal Generation in Jungck Noor Orbit with -Convexity , 2015 .

[25]  Agnieszka Lisowska,et al.  Polynomiography Based on the Nonstandard Newton-Like Root Finding Methods , 2015 .

[26]  Theodore Kim,et al.  Quaternion Julia Set Shape Optimization , 2015, SGP '15.

[27]  Agnieszka Lisowska,et al.  Biomorphs via Modified Iterations , 2016 .

[28]  Shin Min Kang,et al.  NEW TRICORNS AND MULTICORNS ANTIFRACTALS IN JUNGCK MANN ORBIT , 2016 .

[29]  Renu Chugh,et al.  NEW JULIA AND MANDELBROT SETS FOR A NEW FASTER ITERATIVE PROCESS , 2016 .

[30]  Krzysztof Gdawiec,et al.  Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns , 2017, Comput. Graph. Forum.

[31]  Bhagwati Prasad,et al.  Dynamics of iterative schemes for quadratic polynomial , 2017 .

[32]  Krzysztof Gdawiec,et al.  Polynomiography for the polynomial infinity norm via Kalantari's formula and nonstandard iterations , 2017, Appl. Math. Comput..

[33]  Wojciech J. Krzysztofik,et al.  Fractals in Antennas and Metamaterials Applications , 2017 .

[34]  Krzysztof Gdawiec,et al.  Fractal patterns from the dynamics of combined polynomial root finding methods , 2017 .

[35]  Maciej Janowicz,et al.  Pickover biomorphs and non-standard complex numbers , 2018, Chaos, Solitons & Fractals.

[36]  Valery V. Strotov,et al.  Object distance estimation algorithm for real-time FPGA-based stereoscopic vision system , 2018, Remote Sensing.

[37]  Krzysztof Gdawiec,et al.  Fixed point results for the complex fractal generation in the S -iteration orbit with s -convexity , 2018 .

[38]  Muhammad Tanveer,et al.  Boundaries of Filled Julia Sets in Generalized Jungck Mann Orbit , 2019, IEEE Access.

[39]  Shin Min Kang,et al.  Fractal Generation in Modified Jungck–S Orbit , 2019, IEEE Access.

[40]  Shin Min Kang,et al.  Mandelbrot and Julia Sets via Jungck–CR Iteration With $s$ –Convexity , 2019, IEEE Access.

[41]  Ramón Alonso-Sanz Biomorphs with Memory , 2019, From Parallel to Emergent Computing.