Weighted Theta Functions and Embeddings with Applications to Max-Cut, Clustering and Summarization
暂无分享,去创建一个
Devdatt P. Dubhashi | Chiranjib Bhattacharyya | Fredrik D. Johansson | Ankani Chattoraj | C. Bhattacharyya | Ankani Chattoraj
[1] Avrim Blum,et al. Correlation Clustering , 2004, Machine Learning.
[2] Shih-Fu Chang,et al. Semi-supervised learning using greedy max-cut , 2013, J. Mach. Learn. Res..
[3] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[4] Abraham Duarte,et al. Advanced Scatter Search for the Max-Cut Problem , 2009, INFORMS J. Comput..
[5] Hui Lin,et al. A Class of Submodular Functions for Document Summarization , 2011, ACL.
[6] Sanjeev Arora,et al. Fast algorithms for approximate semidefinite programming using the multiplicative weights update method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[7] Donald E. Knuth. The Sandwich Theorem , 1994, Electron. J. Comb..
[8] Alexander Schrijver,et al. A comparison of the Delsarte and Lovász bounds , 1979, IEEE Trans. Inf. Theory.
[9] Michel X. Goemans,et al. Semideenite Programming in Combinatorial Optimization , 1999 .
[10] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[11] D. Pham,et al. Selection of K in K-means clustering , 2005 .
[12] Aristides Gionis,et al. Overlapping Correlation Clustering , 2011, ICDM.
[13] Clifford Stein,et al. Approximating Semidefinite Packing Programs , 2011, SIAM J. Optim..
[14] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[15] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[16] Devdatt P. Dubhashi,et al. Lovász ϑ function, SVMs and finding dense subgraphs , 2013, J. Mach. Learn. Res..
[17] Sanjeev Arora,et al. The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..
[18] L. Lovász. Geometric representations of graphs , 2014 .
[19] M. Elsner,et al. Bounding and Comparing Methods for Correlation Clustering Beyond ILP , 2009, ILP 2009.
[20] E. D. Klerk,et al. The Lovász ϑ-Function , 2002 .
[21] R. Monteiro,et al. A projected gradient algorithm for solving the maxcut SDP relaxation , 2001 .
[22] Don R. Hush,et al. QP Algorithms with Guaranteed Accuracy and Run Time for Support Vector Machines , 2006, J. Mach. Learn. Res..
[23] M. Brand,et al. Fast low-rank modifications of the thin singular value decomposition , 2006 .
[24] Devdatt P. Dubhashi,et al. Lovasz ϑ, SVMs and applications , 2013, 2013 IEEE Information Theory Workshop (ITW).
[25] Bernhard Schölkopf,et al. Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.