RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy

TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.

[1]  Adekunle T. Bademosi,et al.  Aggregation-prone TDP-43 sequesters and drives pathological transitions of free nuclear TDP-43 , 2023, Cellular and Molecular Life Sciences.

[2]  Tracy J. Yuen,et al.  Disease-associated oligodendrocyte responses across neurodegenerative diseases. , 2022, Cell reports.

[3]  J. V. van Swieten,et al.  Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex , 2022, Nature Neuroscience.

[4]  L. Schurgers,et al.  Ageing - Oxidative stress, PTMs and disease. , 2022, Molecular aspects of medicine.

[5]  Alexander J. Bryer,et al.  Recognition of the TDP-43 nuclear localization signal by importin α1/β , 2022, Cell reports.

[6]  Marius Pachitariu,et al.  Cellpose 2.0: how to train your own model , 2022, bioRxiv.

[7]  Sterling C. Johnson,et al.  Exploring common genetic contributors to neuroprotection from amyloid pathology , 2022, Brain communications.

[8]  E. Buratti,et al.  Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43 , 2022, Nature Communications.

[9]  Anna L. Brown,et al.  TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A , 2022, Nature.

[10]  D. Dickson,et al.  TDP-43 Pathology in Alzheimer’s Disease , 2021, Molecular neurodegeneration.

[11]  D. Dickson,et al.  TDP-43 Pathology in Alzheimer’s Disease , 2021, Molecular Neurodegeneration.

[12]  T. Miller,et al.  Specific RNA interactions promote TDP‐43 multivalent phase separation and maintain liquid properties , 2021, EMBO reports.

[13]  Yaoyang Zhang,et al.  Loss of TDP-43 function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies , 2021, Molecular Psychiatry.

[14]  T. Raj,et al.  Transcriptomic analysis of frontotemporal lobar degeneration with TDP-43 pathology reveals cellular alterations across multiple brain regions , 2021, Acta Neuropathologica.

[15]  S. Bardien,et al.  Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders , 2021, Open Biology.

[16]  J. Rothstein,et al.  Nuclear RNA binding regulates TDP-43 nuclear localization and passive nuclear export , 2021, bioRxiv.

[17]  Nicolas L. Fawzi,et al.  TDP-43 condensation properties specify its RNA-binding and regulatory repertoire , 2021, Cell.

[18]  D. Dormann,et al.  Post-translational modifications on RNA-binding proteins: accelerators, brakes, or passengers in neurodegeneration? , 2021, Trends in biochemical sciences.

[19]  M. Kipp,et al.  What Guides Peripheral Immune Cells into the Central Nervous System? , 2021, Cells.

[20]  J. Mann,et al.  RNA modulates physiological and neuropathological protein phase transitions , 2021, Neuron.

[21]  Anne E Carpenter,et al.  CellProfiler 4: improvements in speed, utility and usability , 2021, BMC Bioinformatics.

[22]  Alvaro A. Beltran,et al.  Generation of an induced pluripotent stem cell line (UNCCi002-A) from a healthy donor using a non-integration system to study Cerebral Cavernous Malformation (CCM). , 2021, Stem cell research.

[23]  Nicole F. Liachko,et al.  Regulation of TDP-43 phosphorylation in aging and disease , 2021, GeroScience.

[24]  Xianzheng Sha,et al.  Comparative Analysis of Multiple Neurodegenerative Diseases Based on Advanced Epigenetic Aging Brain , 2021, Frontiers in Genetics.

[25]  Robert H. Brown,et al.  Low-level overexpression of wild type TDP-43 causes late-onset, progressive neurodegeneration and paralysis in mice , 2021, bioRxiv.

[26]  G. Hummer,et al.  Disease‐linked TDP‐43 hyperphosphorylation suppresses TDP‐43 condensation and aggregation , 2021, bioRxiv.

[27]  D. Rincon-Limas,et al.  Molecular, functional, and pathological aspects of TDP-43 fragmentation , 2021, iScience.

[28]  Caitlin M. Rodriguez,et al.  TDP-43 represses cryptic exon inclusion in the FTD–ALS gene UNC13A , 2021, Nature.

[29]  J. Yates,et al.  HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells , 2020, Science.

[30]  P. van Damme,et al.  TDP-43 proteinopathies: a new wave of neurodegenerative diseases , 2020, Journal of Neurology, Neurosurgery, and Psychiatry.

[31]  Hanna S. Yuan,et al.  Frontotemporal dementia‐linked P112H mutation of TDP‐43 induces protein structural change and impairs its RNA binding function , 2020, Protein science : a publication of the Protein Society.

[32]  Zuguang Gu,et al.  simplifyEnrichment: A Bioconductor Package for Clustering and Visualizing Functional Enrichment Results , 2020, bioRxiv.

[33]  D. E. López,et al.  Prepulse Inhibition of the Auditory Startle Reflex Assessment as a Hallmark of Brainstem Sensorimotor Gating Mechanisms , 2020, Brain sciences.

[34]  Anna L. Brown,et al.  Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. , 2020, The Journal of clinical investigation.

[35]  Jie Zhang,et al.  Attenuation of epigenetic regulator SMARCA4 and ERK‐ETS signaling suppresses aging‐related dopaminergic degeneration , 2020, Aging cell.

[36]  T. Shimamura,et al.  ARHGAP10, which encodes Rho GTPase-activating protein 10, is a novel gene for schizophrenia risk , 2020, Translational Psychiatry.

[37]  Robert Johnson,et al.  Structural Analysis , 2020, Multiphysics Modeling with Application to Biomedical Engineering.

[38]  J. Vilo,et al.  gprofiler2 -- an R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler , 2020, F1000Research.

[39]  R. Vandenberghe,et al.  Distinct molecular patterns of TDP-43 pathology in Alzheimer’s disease: relationship with clinical phenotypes , 2020, Acta Neuropathologica Communications.

[40]  Samuel J. Lord,et al.  SuperPlots: Communicating reproducibility and variability in cell biology , 2020, The Journal of cell biology.

[41]  Marius Pachitariu,et al.  Cellpose: a generalist algorithm for cellular segmentation , 2020, Nature Methods.

[42]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[43]  E. Tseng,et al.  5′UTR-mediated regulation of Ataxin-1 expression , 2020, Neurobiology of Disease.

[44]  Pei-Lin Cheng,et al.  A robust TDP-43 knock-in mouse model of ALS , 2020, Acta Neuropathologica Communications.

[45]  M. Khanna,et al.  Structural Insights Into TDP-43 and Effects of Post-translational Modifications , 2019, Front. Mol. Neurosci..

[46]  Lilah M. Besser,et al.  Limbic Predominant Age-Related TDP-43 Encephalopathy (LATE): Clinical and Neuropathological Associations. , 2019, Journal of neuropathology and experimental neurology.

[47]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[48]  Jie Zhang,et al.  Attenuation of epigenetic regulator SMARCA4 and ERK-ETS signaling suppresses aging-related dopaminergic degeneration , 2019, bioRxiv.

[49]  Samuel J. Lord,et al.  If your P value looks too good to be true, it probably is: Communicating reproducibility and variability in cell biology , 2019, 1911.03509.

[50]  Laura E. Herring,et al.  Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity , 2019, eLife.

[51]  R. Rohatgi,et al.  Phase separation-deficient TDP43 remains functional in splicing , 2019, Nature Communications.

[52]  C. Shaw,et al.  RRM adjacent TARDBP mutations disrupt RNA binding and enhance TDP-43 proteinopathy , 2019, Brain : a journal of neurology.

[53]  M. Hasegawa,et al.  The basis of clinicopathological heterogeneity in TDP-43 proteinopathy , 2019, Acta Neuropathologica.

[54]  R. Hertzano,et al.  Semaphorin-5B Controls Spiral Ganglion Neuron Branch Refinement during Development , 2019, The Journal of Neuroscience.

[55]  J. Rohrer,et al.  An update on genetic frontotemporal dementia , 2019, Journal of Neurology.

[56]  J. Vilo,et al.  g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update) , 2019, Nucleic Acids Res..

[57]  C. Jack,et al.  Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report , 2019, Brain : a journal of neurology.

[58]  A. Walker,et al.  The Pathobiology of TDP-43 C-Terminal Fragments in ALS and FTLD , 2019, Front. Neurosci..

[59]  Lin Guo,et al.  Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death , 2019, Neuron.

[60]  B. Portz,et al.  RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43 , 2019, Neuron.

[61]  Trees-Juen Chuang,et al.  Transcriptomopathies of pre- and post-symptomatic frontotemporal dementia-like mice with TDP-43 depletion in forebrain neurons , 2019, Acta Neuropathologica Communications.

[62]  Qi Zhang,et al.  Regional and Cellular Mapping of Sortilin Immunoreactivity in Adult Human Brain , 2019, Front. Neuroanat..

[63]  R. Rohatgi,et al.  Decoding and recoding phase behavior of TDP43 reveals that phase separation is not required for splicing function , 2019, bioRxiv.

[64]  C. Ibáñez,et al.  Abnormal TDP‐43 function impairs activity‐dependent BDNF secretion, synaptic plasticity, and cognitive behavior through altered Sortilin splicing , 2019, The EMBO journal.

[65]  N. Shneider,et al.  Mutant TDP-43 Causes Early-Stage Dose-Dependent Motor Neuron Degeneration in a TARDBP Knockin Mouse Model of ALS. , 2019, Cell reports.

[66]  F. Rigo,et al.  Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration , 2018, Nature Neuroscience.

[67]  Shinji Ogaki,et al.  Arnold , 2018, ACM Trans. Graph..

[68]  Matthew A. White,et al.  Publisher Correction: TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD , 2018, Nature Neuroscience.

[69]  P. Tomançak,et al.  RNA buffers the phase separation behavior of prion-like RNA binding proteins , 2018, Science.

[70]  Jeremy Stinson,et al.  CRISPR off-target analysis in genetically engineered rats and mice , 2018, Nature Methods.

[71]  Eric T. Wang,et al.  Mice with endogenous TDP‐43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis , 2018, The EMBO journal.

[72]  Maximilian Haeussler,et al.  CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens , 2018, Nucleic Acids Res..

[73]  Y. Chook,et al.  Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization , 2018, Scientific Reports.

[74]  W. Ge,et al.  Roles of Nitric Oxide Synthase Isoforms in Neurogenesis , 2018, Molecular Neurobiology.

[75]  Luwen Wang,et al.  Pathomechanisms of TDP‐43 in neurodegeneration , 2018, Journal of neurochemistry.

[76]  Matthew A. White,et al.  TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD , 2018, Nature Neuroscience.

[77]  E. Buratti TDP-43 post-translational modifications in health and disease , 2018, Expert opinion on therapeutic targets.

[78]  David A. Knowles,et al.  Annotation-free quantification of RNA splicing using LeafCutter , 2017, Nature Genetics.

[79]  Michael S. Bereman,et al.  Acetylation-induced TDP-43 pathology is suppressed by an HSF1-dependent chaperone program , 2017, Nature Communications.

[80]  E. Masliah,et al.  Importance of adiponectin activity in the pathogenesis of Alzheimer's disease , 2017, Annals of clinical and translational neurology.

[81]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[82]  Alexander Lex,et al.  UpSetR: an R package for the visualization of intersecting sets and their properties , 2017, bioRxiv.

[83]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[84]  Marco Prinz,et al.  The role of peripheral immune cells in the CNS in steady state and disease , 2017, Nature Neuroscience.

[85]  P. Wong,et al.  Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer’s mouse model , 2016, Acta Neuropathologica.

[86]  L. G. De la Casa,et al.  Reduced Prepulse Inhibition as a Biomarker of Schizophrenia , 2016, Front. Behav. Neurosci..

[87]  W. Scheper,et al.  Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain , 2016, Autophagy.

[88]  V. Plagnol,et al.  Quantitative analysis of cryptic splicing associated with TDP-43 depletion , 2016, BMC Medical Genomics.

[89]  R. Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[90]  J. Gallo,et al.  Tau mis-splicing in the pathogenesis of neurodegenerative disorders , 2016, BMB reports.

[91]  J. Hodges,et al.  The frontotemporal dementia-motor neuron disease continuum , 2016, The Lancet.

[92]  C. Dobson,et al.  Quantification of the Relative Contributions of Loss-of-function and Gain-of-function Mechanisms in TAR DNA-binding Protein 43 (TDP-43) Proteinopathies * , 2016, The Journal of Biological Chemistry.

[93]  J. Joly,et al.  Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR , 2016, Genome Biology.

[94]  I. Mackenzie,et al.  Molecular neuropathology of frontotemporal dementia: insights into disease mechanisms from postmortem studies , 2016, Journal of neurochemistry.

[95]  Eric E. Smith,et al.  The Prevalence and Incidence of Frontotemporal Dementia: a Systematic Review , 2016, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[96]  D. Bennett,et al.  Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides , 2016, EMBO molecular medicine.

[97]  C. Lim,et al.  Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation , 2016, Scientific Reports.

[98]  L. Petrucelli,et al.  TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. , 2016, Human molecular genetics.

[99]  K. Tenbrock,et al.  Neurodegeneration Triggers Peripheral Immune Cell Recruitment into the Forebrain , 2016, The Journal of Neuroscience.

[100]  Meagan E. Sullender,et al.  Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 , 2015, Nature Biotechnology.

[101]  W. Arnold,et al.  Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles , 2015, Journal of visualized experiments : JoVE.

[102]  P. Wong,et al.  TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD , 2015, Science.

[103]  J. Trojanowski,et al.  Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43 , 2015, Acta Neuropathologica.

[104]  F. Cavalcanti,et al.  Splicing: is there an alternative contribution to Parkinson’s disease? , 2015, neurogenetics.

[105]  M. Rosenfeld,et al.  LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation , 2015, Neuron.

[106]  M. L. Seibenhener,et al.  Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. , 2015, Journal of visualized experiments : JoVE.

[107]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[108]  J. Trojanowski,et al.  An acetylation switch controls TDP-43 function and aggregation propensity , 2015, Nature Communications.

[109]  A. Kolodkin,et al.  Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells , 2014, eLife.

[110]  T. Willnow,et al.  Sorting receptor sortilin—a culprit in cardiovascular and neurological diseases , 2014, Journal of Molecular Medicine.

[111]  Robert H. Brown,et al.  Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis , 2014, Proceedings of the National Academy of Sciences.

[112]  H. Fuchs,et al.  Mitochondrial Dysfunction and Decrease in Body Weight of a Transgenic Knock-in Mouse Model for TDP-43* , 2014, The Journal of Biological Chemistry.

[113]  P. Callaerts,et al.  TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? , 2014, Trends in molecular medicine.

[114]  P. Kuo,et al.  The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids , 2014, Nucleic acids research.

[115]  J. Ule,et al.  Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43 , 2013, Nature Structural &Molecular Biology.

[116]  K. Fox,et al.  The role of nitric oxide in pre-synaptic plasticity and homeostasis , 2013, Front. Cell. Neurosci..

[117]  W. Wurst,et al.  Expression Analysis of Lrrk1, Lrrk2 and Lrrk2 Splice Variants in Mice , 2013, PloS one.

[118]  G. Sobue,et al.  Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. , 2013, Brain : a journal of neurology.

[119]  Gene W. Yeo,et al.  ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43 , 2013, Proceedings of the National Academy of Sciences.

[120]  A. Al-Chalabi,et al.  Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes , 2013, Human molecular genetics.

[121]  L. Petrucelli,et al.  Misregulation of human sortilin splicing leads to the generation of a nonfunctional progranulin receptor , 2012, Proceedings of the National Academy of Sciences.

[122]  F. J. Livesey,et al.  Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks , 2012, Nature Protocols.

[123]  C. van Broeckhoven,et al.  The genetics and neuropathology of frontotemporal lobar degeneration , 2012, Acta Neuropathologica.

[124]  N. Cairns,et al.  Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects , 2012, Acta Neuropathologica.

[125]  A. Cardona,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[126]  Allissa Dillman,et al.  MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies , 2012, Human molecular genetics.

[127]  O. Levy,et al.  The neuropathology of genetic Parkinson's disease , 2012, Movement disorders : official journal of the Movement Disorder Society.

[128]  E. Buratti,et al.  TDP-43: gumming up neurons through protein-protein and protein-RNA interactions. , 2012, Trends in biochemical sciences.

[129]  K. Manova-Todorova,et al.  Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma , 2012, PloS one.

[130]  J. Trojanowski,et al.  Redox signalling directly regulates TDP‐43 via cysteine oxidation and disulphide cross‐linking , 2012, The EMBO journal.

[131]  C. Vaegter,et al.  Sortilin and SorLA Regulate Neuronal Sorting of Trophic and Dementia-Linked Proteins , 2012, Molecular Neurobiology.

[132]  E. Buratti,et al.  Cellular Model of TAR DNA-binding Protein 43 (TDP-43) Aggregation Based on Its C-terminal Gln/Asn-rich Region* , 2012, The Journal of Biological Chemistry.

[133]  J. Trojanowski,et al.  Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration , 2011, Nature Reviews Neuroscience.

[134]  Xiaowei Wang,et al.  PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update , 2011, Nucleic Acids Res..

[135]  J. Trojanowski,et al.  TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. , 2011, Trends in molecular medicine.

[136]  J. Hodges,et al.  Motor neuron dysfunction in frontotemporal dementia. , 2011, Brain : a journal of neurology.

[137]  B. Tu,et al.  Hyperphosphorylation as a Defense Mechanism to Reduce TDP-43 Aggregation , 2011, PloS one.

[138]  E. Buratti,et al.  TDP-43 Autoregulation: Implications for Disease , 2011, Journal of Molecular Neuroscience.

[139]  E. Weeber,et al.  Similarities and differences in structure, expression, and functions of VLDLR and ApoER2 , 2011, Molecular Neurodegeneration.

[140]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[141]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[142]  J. Ule,et al.  Characterising the RNA targets and position-dependent splicing regulation by TDP-43; implications for neurodegenerative diseases , 2011, Nature Neuroscience.

[143]  Michael J. Ziller,et al.  Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines , 2011, Cell.

[144]  J. Trojanowski,et al.  Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. , 2011, The Journal of clinical investigation.

[145]  A. Naldi,et al.  Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review , 2011, Neurological Sciences.

[146]  Jernej Ule,et al.  TDP‐43 regulates its mRNA levels through a negative feedback loop , 2011, The EMBO journal.

[147]  Daniel R. Dries,et al.  TDP-43 Is Directed to Stress Granules by Sorbitol, a Novel Physiological Osmotic and Oxidative Stressor , 2010, Molecular and Cellular Biology.

[148]  H. Feldman,et al.  Sortilin-Mediated Endocytosis Determines Levels of the Frontotemporal Dementia Protein, Progranulin , 2010, Neuron.

[149]  H. Hutter,et al.  Neurotoxic effects of TDP-43 overexpression in C. elegans. , 2010, Human molecular genetics.

[150]  L. Petrucelli,et al.  Wild-Type Human TDP-43 Expression Causes TDP-43 Phosphorylation, Mitochondrial Aggregation, Motor Deficits, and Early Mortality in Transgenic Mice , 2010, The Journal of Neuroscience.

[151]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[152]  E. Buratti,et al.  The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation , 2010, RNA biology.

[153]  J. Trojanowski,et al.  Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: A spectrum of TDP‐43 proteinopathies , 2010, Neuropathology : official journal of the Japanese Society of Neuropathology.

[154]  G. Schellenberg,et al.  Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis , 2010, Acta Neuropathologica.

[155]  E. Buratti,et al.  TDP‐43 is recruited to stress granules in conditions of oxidative insult , 2009, Journal of neurochemistry.

[156]  John Q Trojanowski,et al.  Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[157]  J. Morris,et al.  TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy , 2009, Acta Neuropathologica.

[158]  T. O'Connor,et al.  Semaphorin 5B mediates synapse elimination in hippocampal neurons , 2009, Neural Development.

[159]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[160]  John L. Robinson,et al.  Clinical and pathological continuum of multisystem TDP-43 proteinopathies. , 2009, Archives of neurology.

[161]  J. Trojanowski,et al.  Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies , 2009, Acta Neuropathologica.

[162]  M. Neumann,et al.  Molecular Neuropathology of TDP-43 Proteinopathies , 2009, International journal of molecular sciences.

[163]  Andrea D'Ambrogio,et al.  Structural determinants of the cellular localization and shuttling of TDP-43 , 2008, Journal of Cell Science.

[164]  Christian Büchel,et al.  Dissociable Roles for the Hippocampus and the Amygdala in Human Cued versus Context Fear Conditioning , 2008, The Journal of Neuroscience.

[165]  J. Trojanowski,et al.  Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. , 2008, The American journal of pathology.

[166]  J. Trojanowski,et al.  Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. , 2008, Human molecular genetics.

[167]  Eric R. Kandel,et al.  Transgenic Mice Lacking NMDAR-Dependent LTD Exhibit Deficits in Behavioral Flexibility , 2008, Neuron.

[168]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[169]  J. Trojanowski,et al.  TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. , 2007, Archives of neurology.

[170]  D. Butterfield,et al.  Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity , 2007, Nature Reviews Neuroscience.

[171]  John L. Robinson,et al.  Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases , 2007, Acta Neuropathologica.

[172]  J. Morris,et al.  TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. , 2007, The American journal of pathology.

[173]  T. Paunesku,et al.  Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions , 2007, Acta Neuropathologica.

[174]  Murray Grossman,et al.  TDP-43-Positive White Matter Pathology in Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions , 2007, Journal of neuropathology and experimental neurology.

[175]  M. Jung,et al.  Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review , 2006, Neuroscience & Biobehavioral Reviews.

[176]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[177]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[178]  S. Melquist,et al.  Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17 , 2006, Nature.

[179]  C. Vorhees,et al.  Morris water maze: procedures for assessing spatial and related forms of learning and memory , 2006, Nature Protocols.

[180]  N. Sato,et al.  Prepulse inhibition of acoustic startle response in mild cognitive impairment and mild dementia of Alzheimer type , 2006, Psychiatry and clinical neurosciences.

[181]  M. Frotscher,et al.  Modulation of Synaptic Plasticity and Memory by Reelin Involves Differential Splicing of the Lipoprotein Receptor Apoer2 , 2005, Neuron.

[182]  F. X. Guix,et al.  The physiology and pathophysiology of nitric oxide in the brain , 2005, Progress in Neurobiology.

[183]  Michael J. Hansen,et al.  Semaphorin 5A Is a Bifunctional Axon Guidance Cue Regulated by Heparan and Chondroitin Sulfate Proteoglycans , 2004, Neuron.

[184]  E. Brunamonti,et al.  Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice , 2002, Behavioural Brain Research.

[185]  S Shimohama,et al.  Activation of MKK6, an upstream activator of p38, in Alzheimer's disease , 2001, Journal of neurochemistry.

[186]  Francisco E. Baralle,et al.  Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9* , 2001, The Journal of Biological Chemistry.

[187]  Jeremy M. Shefner,et al.  Motor unit number estimation in human neurological diseases and animal models , 2001, Clinical Neurophysiology.

[188]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[189]  Jerilyn A. Walker,et al.  Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). , 2000, BioTechniques.

[190]  J. Hodges,et al.  Frontotemporal dementia , 1999, Neurology.

[191]  S. Tonegawa,et al.  Hippocampal lesions impair contextual fear conditioning in two strains of mice. , 1996, Behavioral neuroscience.

[192]  Joseph E LeDoux,et al.  Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. , 1992, Behavioral neuroscience.

[193]  OUP accepted manuscript , 2022, Brain Communications.

[194]  J. Deragon,et al.  Moderated estimation of fold change and dispersion for RNA-seq data , 2020 .

[195]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[196]  G. Quirk,et al.  Dissociable Roles of Prelimbic and Infralimbic Cortices, Ventral Hippocampus, and Basolateral Amygdala in the Expression and Extinction of Conditioned Fear , 2011, Neuropsychopharmacology.

[197]  Buccafusco Jj Cued and Contextual Fear Conditioning for Rodents -- Methods of Behavior Analysis in Neuroscience , 2009 .

[198]  K. Browman,et al.  Cued and Contextual Fear Conditioning for Rodents , 2009 .

[199]  C. Walsh,et al.  Mutations in ARFGEF2 implicate vesicle trafficking in neural progenitor proliferation and migration in the human cerebral cortex , 2004, Nature Genetics.

[200]  H. Magoun,et al.  INTO THE CENTRAL NERVOUS SYSTEM , 2003 .

[201]  Harry T. Orr,et al.  Identification and characterization of the gene causing type 1 spinocerebellar ataxia , 1994, Nature Genetics.