Seismic Noise Attenuation Using Unsupervised Sparse Feature Learning

Noise attenuation plays an important role in seismic data processing. We propose a novel denoising method for seismic data based on unsupervised sparse feature learning. Our goal is to obtain the identifiable feature of the noisy seismic data and then to represent the effective signals. By preprocessing the raw data and training the autoencoder neural network with sparse constraint, the sparse feature of the seismic data can be learned and stored in the neural network. We use the adaptive moment estimation as a backpropagation algorithm to minimize the cost function with a sparse penalty term and combine the dropout technique in the training process to improve the feature extraction and generalization capability of the neural network. Then, the test data set can be reconstructed by the most important sparse features. The final denoising result can be obtained by rearranging the output test data set. Compared with three commonly used state-of-the-art denoising methods, the proposed method performs well in applications to denoising for synthetic and real seismic data.

[1]  Walter Söllner,et al.  A method of combining coherence-constrained sparse coding and dictionary learning for denoising , 2017 .

[2]  Alfred Hanssen,et al.  Sparse code shrinkage for signal enhancement of seismic data , 2011 .

[3]  Yangkang Chen,et al.  Automatic microseismic event picking via unsupervised machine learning , 2020, Geophysical Journal International.

[4]  Mokhtar Mohammadi,et al.  Seismic Random Noise Attenuation Using Synchrosqueezed Wavelet Transform and Low-Rank Signal Matrix Approximation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Yangkang Chen,et al.  Simultaneous denoising and interpolation of 2D seismic data using data-driven non-negative dictionary learning , 2017, Signal Process..

[6]  Anil M. Cheriyadat,et al.  Unsupervised Feature Learning for Aerial Scene Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[7]  L. Canales Random Noise Reduction , 1984 .

[8]  Yurong Liu,et al.  A survey of deep neural network architectures and their applications , 2017, Neurocomputing.

[9]  Ning Wu,et al.  Random-Noise Attenuation for Seismic Data by Local Parallel Radial-Trace TFPF , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Xishuang Dong,et al.  A scalable deep learning platform for identifying geologic features from seismic attributes , 2017 .

[11]  Valentí Sallarès,et al.  Waveform-Preserving Processing Flow of Multichannel Seismic Reflection Data for Adjoint-State Full-Waveform Inversion of Ocean Thermohaline Structure , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[12]  S. Mostafa Mousavi,et al.  Unsupervised Clustering of Seismic Signals Using Deep Convolutional Autoencoders , 2019, IEEE Geoscience and Remote Sensing Letters.

[13]  Björn W. Schuller,et al.  Autoencoder-based Unsupervised Domain Adaptation for Speech Emotion Recognition , 2014, IEEE Signal Processing Letters.

[14]  Jun Dai,et al.  Matching-Pursuit-Based Spatial-Trace Time-Frequency Peak Filtering for Seismic Random Noise Attenuation , 2015, IEEE Geoscience and Remote Sensing Letters.

[15]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[16]  Geoffrey E. Hinton,et al.  Autoencoders, Minimum Description Length and Helmholtz Free Energy , 1993, NIPS.

[17]  Yatong Zhou,et al.  Empirical Low-Rank Approximation for Seismic Noise Attenuation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[18]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[19]  Hui Zhou,et al.  Hybrid-Sparsity Constrained Dictionary Learning for Iterative Deblending of Extremely Noisy Simultaneous-Source Data , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[20]  S. Mostafa Mousavi,et al.  Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform , 2016 .

[21]  Dong Zhang,et al.  Seismic noise attenuation using an online subspace tracking algorithm , 2018, Geophysical Journal International.

[22]  Zhenming Peng,et al.  Seismic random noise attenuation using shearlet and total generalized variation , 2015 .

[23]  Yangkang Chen,et al.  Fast waveform detection for microseismic imaging using unsupervised machine learning , 2018 .

[24]  Alfred Hanssen,et al.  Multiple-input adaptive seismic noise canceller for the attenuation of nonstationary coherent noise , 2011 .

[25]  Yoshua Bengio,et al.  What regularized auto-encoders learn from the data-generating distribution , 2012, J. Mach. Learn. Res..

[26]  Wei Liu,et al.  An effective approach to attenuate random noise based on compressive sensing and curvelet transform , 2016 .

[27]  Pierre Alliez,et al.  Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Haipeng Wang,et al.  Target Classification Using the Deep Convolutional Networks for SAR Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Hongbo Lin,et al.  Random denoising and signal nonlinearity approach by time-frequency peak filtering using weighted frequency reassignment , 2013 .

[30]  Alireza Ahmadifard,et al.  Sparse time-frequency representation for seismic noise reduction using low-rank and sparse decomposition , 2016 .

[31]  Mark E. Willis,et al.  An effective noise-suppression technique for surface microseismic data , 2013 .

[32]  Mauricio D. Sacchi,et al.  Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Yangkang Chen,et al.  Data-driven multitask sparse dictionary learning for noise attenuation of 3D seismic data , 2017 .

[34]  Yangkang Chen,et al.  Random Noise Attenuation Using Local Signal and Noise Orthogonalization , 2015 .

[35]  F. Herrmann,et al.  Non-linear primary-multiple separation with directional curvelet frames , 2007 .

[36]  Cheng-Yuan Liou,et al.  Modeling word perception using the Elman network , 2008, Neurocomputing.

[37]  Yangkang Chen,et al.  Damped multichannel singular spectrum analysis for 3D random noise attenuation , 2016 .

[38]  J. Claerbout,et al.  Lateral prediction for noise attenuation by t-x and f-x techniques , 1995 .

[39]  Yangkang Chen,et al.  Application of spectral decomposition using regularized non-stationary autoregression to random noise attenuation , 2015 .

[40]  R. Vautard,et al.  Singular-spectrum analysis: a toolkit for short, noisy chaotic signals , 1992 .

[41]  Wei Liu,et al.  A Novel Hydrocarbon Detection Approach via High-Resolution Frequency-Dependent AVO Inversion Based on Variational Mode Decomposition , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[43]  Stewart Trickett,et al.  F-xy Cadzow Noise Suppression , 2008 .

[44]  Lei Guo,et al.  When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[45]  S. Mostafa Mousavi,et al.  Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding , 2016 .

[46]  Jinghuai Gao,et al.  Multimutation Differential Evolution Algorithm and Its Application to Seismic Inversion , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Ronald Kemker,et al.  Self-Taught Feature Learning for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Mauricio D. Sacchi,et al.  Multicomponent f-x seismic random noise attenuation via vector autoregressive operators , 2012 .

[49]  Sergey Fomel,et al.  EMD-seislet transform , 2015 .

[50]  Necati Gulunay,et al.  Signal leakage in f-x deconvolution algorithms , 2017 .

[51]  S. Mostafa Mousavi,et al.  Adaptive noise estimation and suppression for improving microseismic event detection , 2016 .

[52]  Yangkang Chen,et al.  Random noise attenuation by f-x empirical mode decomposition predictive filtering , 2014 .

[53]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[54]  Stanley Osher,et al.  Noise attenuation in a low-dimensional manifold , 2017, GEOPHYSICS.

[55]  Yangkang Chen,et al.  Fast dictionary learning for noise attenuation of multidimensional seismic data , 2017, Geophysical Journal International.

[56]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[57]  Mostafa Naghizadeh,et al.  Seismic data interpolation and denoising in the frequency-wavenumber domain , 2012 .

[58]  Cheng-Yuan Liou,et al.  Autoencoder for words , 2014, Neurocomputing.

[59]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[60]  Jinghuai Gao,et al.  Adaptive Variable Time Fractional Anisotropic Diffusion Filtering for Seismic Data Noise Attenuation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Yangkang Chen,et al.  Simultaneous Sources Separation via an Iterative Rank-Increasing Method , 2016, IEEE Geoscience and Remote Sensing Letters.

[62]  James H. McClellan,et al.  Seismic data denoising through multiscale and sparsity-promoting dictionary learning , 2015 .

[63]  Necati Gulunay,et al.  FXDECON and complex wiener prediction filter , 1986 .

[64]  Guochang Liu,et al.  Random noise attenuation using f-x regularized nonstationary autoregression , 2012 .

[65]  Juan Wu,et al.  Incoherent dictionary learning for reducing crosstalk noise in least-squares reverse time migration , 2018, Comput. Geosci..

[66]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[67]  Weilin Huang,et al.  Simultaneous Coherent and Random Noise Attenuation by Morphological Filtering With Dual-Directional Structuring Element , 2017, IEEE Geoscience and Remote Sensing Letters.

[68]  Jianzhong Zhang,et al.  Synchrosqueezing S-Transform and Its Application in Seismic Spectral Decomposition , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[69]  Yangkang Chen,et al.  Random noise attenuation using local signal-and-noise orthogonalization , 2015 .

[70]  Yangkang Chen,et al.  Double Least-Squares Projections Method for Signal Estimation , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[72]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[73]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[74]  Ghassan AlRegib,et al.  Successful leveraging of image processing and machine learning in seismic structural interpretation: A review , 2018, The Leading Edge.

[75]  Qing Liu,et al.  Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Mauricio D. Sacchi,et al.  Robust reduced-rank filtering for erratic seismic noise attenuation , 2015 .

[77]  Marc'Aurelio Ranzato,et al.  Efficient Learning of Sparse Representations with an Energy-Based Model , 2006, NIPS.

[78]  Xiaohong Chen,et al.  Noncausal f–x–y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data , 2013 .

[79]  Benfeng Wang,et al.  Simultaneous seismic data interpolation and denoising with a new adaptive method based on dreamlet transform , 2015 .

[80]  Yangkang Chen,et al.  Double Sparsity Dictionary for Seismic Noise Attenuation , 2016 .

[81]  Qiang Zhao,et al.  Signal-Preserving Erratic Noise Attenuation via Iterative Robust Sparsity-Promoting Filter , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[82]  R. Neelamani,et al.  Coherent and random noise attenuation using the curvelet transform , 2008 .

[83]  Weilin Huang,et al.  Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method , 2016 .

[84]  Matt Hall,et al.  Distributed collaborative prediction: Results of the machine learning contest , 2017 .

[85]  Indranil Pan,et al.  Seismic facies analysis using machine learning , 2018, Geophysics.

[86]  Yue Li,et al.  Seismic Exploration Random Noise on Land: Modeling and Application to Noise Suppression , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[87]  S. Mostafa Mousavi,et al.  Seismic Signal Denoising and Decomposition Using Deep Neural Networks , 2018, IEEE Transactions on Geoscience and Remote Sensing.