Improvement of the ab initio embedded cluster method for luminescence properties of doped materials by taking into account impurity induced distortions: the example of Y2O3:Bi(3+).
暂无分享,去创建一个
[1] L. Seijo,et al. Ab initio calculations on the local structure and the 4f–5d absorption and emission spectra of Ce3+-doped YAG , 2008 .
[2] M. Lepetit,et al. Fast calculation of the electrostatic potential in ionic crystals by direct summation method. , 2007, The Journal of chemical physics.
[3] J. Flament,et al. Ab initio embedded cluster study of the excitation spectrum and Stokes shifts of Bi3+-doped Y2O3. , 2007, The Journal of chemical physics.
[4] P. Dorenbos,et al. Lattice relaxation study of the 4f-5d excitation of Ce3+-doped LaCl3, LaBr3, and NaLaF4: Stokes shift by pseudo Jahn-Teller effect , 2007 .
[5] M. Dolg,et al. Computational investigation of the Bi lone-pairs in monoclinic bismuth triborate BiB3O6. , 2007, Physical chemistry chemical physics : PCCP.
[6] J. Flament,et al. Ab initio study of a Bi3+ impurity in Cs2NaYCl6 and Y2O3: comparison of perturbative and variational electron correlation methods. , 2006, The Journal of chemical physics.
[7] M. Dolg,et al. First-principles electronic structure study of the monoclinic crystal bismuth triborate BiB3O6. , 2006, The journal of physical chemistry. B.
[8] L. Seijo,et al. Large anomalies due to insufficiency of Madelung embedding in ab initio calculations of 4f-5d and 4f-6s excitations of lanthanides in ionic crystals: the BaF2:Ce3+ crystal , 2006 .
[9] Jerzy Leszczynski,et al. COMPUTATIONAL CHEMISTRY: Reviews of Current Trends , 2006 .
[10] Richard L. Martin,et al. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.
[11] B. Roos,et al. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2) , 2004 .
[12] B. Roos,et al. Molcas: a program package for computational chemistry. , 2003 .
[13] M. Marsman,et al. Lattice relaxation of luminescence centres of the X-line emission of ns2 impurity ions in alkali halides; anomalous geometry of the impurity centre in the excited nsnp state , 2001 .
[14] M. Marsman,et al. Ab initio study of the stokes shift of the ns-np transition of Tl+ and In+ in KCl, Jahn-Teller effect in the nsnp configuration , 2001 .
[15] L. V. Pieterson,et al. Charge transfer luminescence of Yb3 , 2000 .
[16] Michael Dolg,et al. Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO , 2000 .
[17] Valérie Vallet,et al. A two-step uncontracted determinantal effective Hamiltonian-based SO–CI method , 2000 .
[18] M. Marsman,et al. Structure, optical absorption, and luminescence energy calculations of Ce3+ defects in LiBaF3 , 2000 .
[19] V. Barone,et al. Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .
[20] Luis Serrano-Andrés,et al. The multi-state CASPT2 method , 1998 .
[21] K. Burke,et al. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .
[22] Wang,et al. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.
[23] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[24] L. Seijo,et al. Ab initio model potential calculations on the electronic spectrum of Ni2+‐doped MgO including correlation, spin–orbit and embedding effects , 1996 .
[25] L. Seijo,et al. Ab initio model potential study of environmental effects on the Jahn–Teller parameters of Cu2+ and Ag2+ impurities in MgO, CaO, and SrO hosts , 1993 .
[26] A. Becke. A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .
[27] Wang,et al. Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.
[28] Björn O. Roos,et al. Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .
[29] Kerstin Andersson,et al. Second-order perturbation theory with a CASSCF reference function , 1990 .
[30] H. Stoll,et al. Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .
[31] Wang,et al. Jellium work function for all electron densities. , 1988, Physical review. B, Condensed matter.
[32] L. Seijo,et al. The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl:Cu+ , 1988 .
[33] John P. Perdew,et al. Density functional theory and the band gap problem , 1986 .
[34] J. Pannetier,et al. Refinement of the Y2O3 structure at 77 K , 1980 .
[35] S. H. Vosko,et al. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .
[36] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[37] P. Durand,et al. A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids , 1975 .
[38] G. Boulon,et al. tude de la cintique des centres luminognes Bi3+ dans les cristaux , 1975 .
[39] G. Boulon. Processus de photoluminescence dans les oxydes et les orthovanadates de terres rares polycristallins activés par l'ion Bi3+ , 1971 .
[40] S. Z. Toma,et al. Luminescence of Some Bismuth‐Activated Oxides , 1969 .
[41] G. Blasse,et al. Investigations on Bi3+‐Activated Phosphors , 1968 .
[42] R. K. Datta,et al. Luminescent Behavior of Bismuth in Rare‐Earth Oxides , 1967 .
[43] J. Bearden,et al. Atomic energy levels , 1965 .
[44] E. Condon,et al. Nuclear Motions Associated with Electron Transitions in Diatomic Molecules , 1928 .
[45] James Franck,et al. Elementary processes of photochemical reactions , 1926 .