A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants

This paper reports a complete micro gas chromatography (μGC) system in which all the components are lithographically microfabricated and electronically interfaced. The components include a bi-directional Knudsen pump, a preconcentrator, separation columns and a pair of capacitive gas detectors; together, these form the iGC3.c2 system. All the fluidic components of the system are fabricated by a common three-mask lithographic process. The Knudsen pump is a thermomolecular pump that provides air flow to the μGC without any moving parts. The film heaters embedded in the separation columns permit temperature programming. The capacitive detectors provide complementary response patterns, enhancing vapor recognition and resolving co-eluting peaks. With the components assembled on printed circuit boards, the system has a footprint of 8×10 cm2 . Using room air as the carrier gas, the system is used to experimentally demonstrate the analysis of 19 chemicals with concentration levels on the order of parts per million (p.p.m.) and parts per billion (p.p.b.). The tested chemicals include alkanes, aromatic hydrocarbons, aldehydes, halogenated hydrocarbons and terpenes. This set of chemicals represents a variety of common indoor air pollutants, among which benzene, toluene and xylenes (BTX) are of particular interest.

[1]  R. Sacks,et al.  High-performance, static-coated silicon microfabricated columns for gas chromatography. , 2006, Analytical chemistry.

[2]  许旱峤,et al.  Kirk-Othmer Encyclopedia of Chemical Technology数据库介绍及实例 , 2007 .

[3]  Mona E. Zaghloul,et al.  Microfabricated chemical preconcentrators for gas-phase microanalytical detection systems , 2008 .

[4]  Xudong Fan,et al.  A microfabricated optofluidic ring resonator for sensitive, high-speed detection of volatile organic compounds. , 2014, Lab on a chip.

[5]  T. Maeda High Speed Gas Chromatography. , 2001 .

[6]  Massimo Lazzari,et al.  Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects , 2001 .

[7]  E. Dalcanale,et al.  Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph , 2009 .

[8]  L. Marr,et al.  Zebra GC: A mini gas chromatography system for trace-level determination of hazardous air pollutants , 2015 .

[9]  Risto Kostiainen,et al.  Volatile organic compounds in the indoor air of normal and sick houses , 1995 .

[10]  Charles Reese,et al.  Occupational Safety and Health Administration (OSHA) , 2017 .

[11]  Adarsh D. Radadia,et al.  The effect of microcolumn geometry on the performance of micro-gas chromatography columns for chip scale gas analyzers , 2010 .

[12]  C. Hagleitner,et al.  Smart single-chip gas sensor microsystem , 2001, Nature.

[13]  Christian Wohlfarth,et al.  Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures: Supplement to IV/6 , 2008 .

[14]  K. Najafi,et al.  A Micropump-Driven High-Speed MEMS Gas Chromatography System , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[15]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[16]  M. Knudsen,et al.  Eine Revision der Gleichgewichtsbedingung der Gase. Thermische Molekularströmung , 1909 .

[17]  K. Kurabayashi,et al.  Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection. , 2015, Lab on a chip.

[18]  Y. Gianchandani,et al.  Modeling and characterization of the transient performance of a gas detector based on fringe-field capacitance , 2014, IEEE SENSORS 2014 Proceedings.

[19]  C. M. Cooke,et al.  Moisture sensing in transformer oil using thin-film microdielectrometry , 1989 .

[20]  Xin Zhang,et al.  A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector , 2010 .

[21]  M. Agah,et al.  GC-on-chip: integrated column and photoionization detector. , 2015, Lab on a chip.

[22]  A. Westman-Brinkmalm,et al.  A Mass Spectrometer's Building Blocks , 2008 .

[23]  Y. Gianchandani,et al.  An all electronic, fully microfabricated micro gas chromatograph , 2015, 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS).

[24]  U. Bonne 2.11 – Gas Sensors , 2008 .

[25]  Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis. , 2015, Nanoscale.

[26]  Tom Fearn,et al.  Multivariate Curve Resolution , 2011 .

[27]  E. Barry Columns: Packed and Capillary; Column Selection in Gas Chromatography , 2004 .

[28]  Rui Igreja,et al.  Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness , 2006 .

[29]  J. Pawliszyn,et al.  Estimation of air/coating distribution coefficients for solid phase microextraction using retention indexes from linear temperature-programmed capillary gas chromatography. Application to the sampling and analysis of total petroleum hydrocarbons in air. , 1997, Analytical chemistry.

[30]  Todd E. Mlsna,et al.  Chemicapacitive microsensors for volatile organic compound detection , 2003 .

[31]  Y. Gianchandani,et al.  Thermal transpiration in mixed cellulose ester membranes: Enabling miniature, motionless gas pumps , 2011 .

[32]  E. Zellers,et al.  Microfabricated gas chromatograph for the selective determination of trichloroethylene vapor at sub-parts-per-billion concentrations in complex mixtures. , 2011, Analytical chemistry.

[33]  Y. Gianchandani,et al.  iGC1: An Integrated Fluidic System for Gas Chromatography Including Knudsen Pump, Preconcentrator, Column, and Detector Microfabricated by a Three-Mask Process , 2014, Journal of Microelectromechanical Systems.

[34]  Stephen K. Brown,et al.  Concentrations of Volatile Organic Compounds in Indoor Air – A Review , 1994 .

[35]  Yutao Qin,et al.  iGC2: an architecture for micro gas chromatographs utilizing integrated bi-directional pumps and multi-stage preconcentrators , 2014 .

[36]  Todd E. Mlsna,et al.  Chemicapacitive Microsensors for Chemical Warfare Agent and Toxic Industrial Chemical Detection , 2006 .

[37]  Xudong Fan,et al.  Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection , 2014, Nature Communications.

[38]  Yufeng J. Tseng,et al.  21.5 A portable micro gas chromatography system for volatile compounds detection with 15ppb of sensitivity , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[39]  J. E. Mark Polymer Data Handbook , 2009 .

[40]  K. Ward,et al.  Immobilization of cytochrome c oxidase into electrode-supported lipid bilayer membranes for in vitro cytochrome c sensing , 2006, IEEE Sensors Journal.

[41]  J. M. Bauer,et al.  Recent advancements in the gas-phase MicroChemLab , 2006, IEEE Sensors Journal.

[42]  K. Scholten,et al.  Multivariate curve resolution of co-eluting vapors from a gas chromatograph with microsensor array detector , 2014 .

[43]  J. Huff Benzene-induced Cancers: Abridged History and Occupational Health Impact , 2007, International journal of occupational and environmental health.

[44]  Jing Liu,et al.  Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography. , 2012, Lab on a chip.