A remark on the application of the Newton-Raphson method in non-linear finite element analysis

Usually the notion “Newton-Raphson method” is used in the context of non-linear finite element analysis based on quasi-static problems in solid mechanics. It is pointed out that this is only true in the case of non-linear elasticity. In the case of constitutive equations of evolutionary-type, like in viscoelasticity, viscoplasticity or elastoplasticity, the “Multilevel-Newton algorithm” is usually applied yielding the notions of global and local level (iteration), as well as the consistent tangent operator. In this paper, we investigate the effects of a consistent application of the classical Newton-Raphson method in connection with the finite element method, and compare it with the classical Multilevel-Newton algorithm. Furthermore, an improved version of the Multilevel-Newton method is applied.

[1]  W. Hoyer,et al.  Newton-Type Decomposition Methods for Equations Arising in Network Analysis† , 1984 .

[2]  S. Hartmann On displacement control within the DIRK/MLNA approach in non-linear finite element analysis , 2003 .

[3]  Peter Fritzen Numerische Behandlung nichtlinearer Probleme der Elastizitäts- und Plastizitätstheorie , 1997 .

[4]  O. Scherf,et al.  A BDF2 integration method with step size control for elasto-plasticity , 2004 .

[5]  A. Sangiovanni-Vincentelli,et al.  A multilevel Newton algorithm with macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain , 1979 .

[6]  Thomas J. R. Hughes,et al.  Consistent linearization in mechanics of solids and structures , 1978 .

[7]  N. Bićanić,et al.  Who was ‘–Raphson’? , 1979 .

[8]  Vom Fachbereich,et al.  Finite-Elemente Berechnung inelastischer Kontinua Interpretation als Algebro-Differentialgleichungssysteme , 2003 .

[9]  Stefan Hartmann,et al.  Remarks on the interpretation of current non‐linear finite element analyses as differential–algebraic equations , 2001, International Journal for Numerical Methods in Engineering.

[10]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[11]  J. R. Cash,et al.  Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .

[12]  Stefan Hartmann,et al.  On the numerical treatment of finite deformations in elastoviscoplasticity , 1997 .

[13]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[14]  S. Hartmann Computation in finite-strain viscoelasticity: finite elements based on the interpretation as differential–algebraic equations , 2002 .

[15]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[16]  H. Hibbitt,et al.  A finite element formulation for problems of large strain and large displacement , 1970 .

[17]  S. Hartmann,et al.  AN EFFICIENT STRESS ALGORITHM WITH APPLICATIONS IN VISCOPLASTICITY AND PLASTICITY , 1997 .

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  L. Anand,et al.  Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic—viscoplastic solids , 1990 .