Homological approximations in persistence theory

. We define a class of invariants, which we call homological invariants, for persistence modules over a finite poset. Informally, a homological invariant is one that respects some homological data and takes values in the free abelian group generated by a finite set of indecomposable modules. We focus in particular on groups generated by “spread modules”, which are sometimes called “interval modules” in the persistence theory literature. We show that both the dimension vector and rank invariant are equivalent to homological invariants taking values in groups generated by spread modules. We also show that that the free abelian group generated by the “single-source” spread modules gives rise to a new invariant which is finer than the rank invariant.

[1]  Kiyoshi Igusa,et al.  Continuous quivers of type A (I) foundations , 2022, Rendiconti del Circolo Matematico di Palermo Series 2.

[2]  F. Mémoli,et al.  Computing Generalized Rank Invariant for 2-Parameter Persistence Modules via Zigzag Persistence and Its Applications , 2021, SoCG.

[3]  S. Oudot,et al.  Signed Barcodes for Multi-Parameter Persistence via Rank Decompositions and Rank-Exact Resolutions , 2021, SoCG.

[4]  A. Patel,et al.  Edit Distance and Persistence Diagrams Over Lattices , 2020, SIAM J. Appl. Algebra Geom..

[5]  Peter Bubenik,et al.  Graded Persistence Diagrams and Persistence Landscapes , 2019, Discrete & Computational Geometry.

[6]  H. Krause Homological Theory of Representations , 2021 .

[7]  Peter Bubenik,et al.  Homological Algebra for Persistence Modules , 2019, Found. Comput. Math..

[8]  Woojin Kim,et al.  Generalized persistence diagrams for persistence modules over posets , 2018, Journal of Applied and Computational Topology.

[9]  H. Krause,et al.  Tilting preserves finite global dimension , 2019, Comptes Rendus. Mathématique.

[10]  W. Crawley-Boevey,et al.  Decomposition of persistence modules , 2018, Proceedings of the American Mathematical Society.

[11]  L. Positselski,et al.  ∞-tilting theory , 2017, Pacific Journal of Mathematics.

[12]  T. Brustle,et al.  Reduction of exact structures , 2018, 1809.01282.

[13]  Amit Patel,et al.  Generalized persistence diagrams , 2016, J. Appl. Comput. Topol..

[14]  G. Naber,et al.  Elements of the Representation Theory of Associative Algebras Volume 1 Techniques of Representation Theory , 2017 .

[15]  Emerson G. Escolar,et al.  Persistence Modules on Commutative Ladders of Finite Type , 2014, Discrete & Computational Geometry.

[16]  Erin W. Chambers,et al.  Persistent Homology Over Directed Acyclic Graphs , 2014, ArXiv.

[17]  Peter Bubenik,et al.  Categorification of Persistent Homology , 2012, Discret. Comput. Geom..

[18]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[19]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[20]  D. Simson,et al.  Elements of the Representation Theory of Associative Algebras , 2007 .

[21]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[22]  S. Fomin,et al.  Cluster algebras IV: Coefficients , 2006, Compositio Mathematica.

[23]  Kaladhar Voruganti,et al.  Volume I , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[24]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[25]  P. Dräxler,et al.  Exact categories and vector space categories , 1999 .

[26]  P. Webb REPRESENTATION THEORY OF ARTIN ALGEBRAS (Cambridge Studies in Advanced Mathematics 36) By Maurice Auslander, Idun Reiten and Sverre O. Smalø: 423 pp., £50.00, ISBN 0 521 41134 3 (Cambridge University Press, 1995). , 1997 .

[27]  A. King MODULI OF REPRESENTATIONS OF FINITE DIMENSIONAL ALGEBRAS , 1994 .

[28]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes , 1993, SCG '93.

[29]  D. Simson Linear Representations of Partially Ordered Sets and Vector Space Categories , 1993 .

[30]  P. Frosini,et al.  A distance for similarity classes of submanifolds of a Euclidean space , 1990, Bulletin of the Australian Mathematical Society.

[31]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[32]  M. Auslander Relative homology and representation theory I. Relative homology and homologically finite subcategories , 2022 .