Optimum Design of Disc Brake Using NSGAIIAlgorithm

This work presents an application of improved Elitist Non-dominated Sorting Genetic Algorithm version II (NSGAII), to multi-objective disc brake optimization problem. The disc brake optimization problem is considered as a two-objective problem. The first objective is the minimization of the mass of the brake and the second objective is the minimization of the stopping time. The disc brake optimization model has four design variables and five inequality constraints. To improve the performance of NSGA-II, two modifications are proposed. One modification is incorporation of Virtual Mapping Procedure (VMP), and the other is introduction of controlled elitism in NSGA-II. The main objective of this project is to apply NSGA-II Algorithm for optimizing the design of Disc Brake for minimization of brake mass and stopping time and to compare the results obtained by NSGA-II Algorithm with that of the results already published for Genetic Algorithm.

[1]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[2]  A. Osyczka,et al.  A modified distance method for multicriteria optimization, using genetic algorithms , 1996 .

[3]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[4]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[5]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[6]  Xavier Gandibleux,et al.  Multiobjective Programming and Goal Programming: Theoretical Results and Practical Applications , 2009 .

[7]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[8]  Xin-She Yang,et al.  Multiobjective firefly algorithm for continuous optimization , 2012, Engineering with Computers.

[9]  Mehrdad Tamiz Multi-Objective Programming and Goal Programming , 1996 .

[10]  Robert W. Serth,et al.  Design of Shell-and-Tube Heat Exchangers , 2014 .

[11]  Carlos A. Coello Coello,et al.  Recent Trends in Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[12]  Shang He,et al.  An improved particle swarm optimizer for mechanical design optimization problems , 2004 .

[13]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[14]  J. David Schaffer,et al.  Multi-Objective Learning via Genetic Algorithms , 1985, IJCAI.

[15]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[16]  S. Baskar,et al.  NSGA-II algorithm for multi-objective generation expansion planning problem , 2009 .

[17]  Prabhat Hajela,et al.  Genetic search strategies in multicriterion optimal design , 1991 .

[18]  Jun Wu,et al.  Dynamic Crowding Distance?A New Diversity Maintenance Strategy for MOEAs , 2008, 2008 Fourth International Conference on Natural Computation.

[20]  Xavier Blasco Ferragud,et al.  Comparison of design concepts in multi-criteria decision-making using level diagrams , 2013, Inf. Sci..

[21]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[22]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[23]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[24]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[25]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[26]  David W. Corne,et al.  No Free Lunch and Free Leftovers Theorems for Multiobjective Optimisation Problems , 2003, EMO.

[27]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[28]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[29]  Jeffrey Horn,et al.  The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 2001, EMO.

[30]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[31]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[32]  S. Ramesh,et al.  Application of modified NSGA-II algorithm to multi-objective reactive power planning , 2012, Appl. Soft Comput..

[33]  Salvatore Greco,et al.  Evolutionary Multi-Criterion Optimization , 2011, Lecture Notes in Computer Science.

[34]  Xin-She Yang,et al.  Multi-Objective Flower Algorithm for Optimization , 2014, ICCS.

[35]  Salim Fettaka,et al.  Design of shell-and-tube heat exchangers using multiobjective optimization , 2013 .

[36]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[37]  Ali R. Yildiz,et al.  An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry , 2009 .

[38]  Jahau Lewis Chen,et al.  Optimal design of machine elements using genetic algorithms , 1993 .