Understanding sulfation effect on the kinetics of carbonation reaction in calcium looping for CO2 capture

[1]  Yongqing Xu,et al.  Sorption enhanced steam reforming of ethanol over Ni-based catalyst coupling with high-performance CaO pellets , 2021 .

[2]  Shengping Wang,et al.  Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture , 2021, Frontiers of Chemical Science and Engineering.

[3]  J. Ran,et al.  Understanding the effect of H2S on the capture of CO2 using K-doped Li4SiO4 sorbent , 2021 .

[4]  V. Manović,et al.  Supercritical CO2 cycle for coal-fired power plant based on calcium looping combustion , 2020 .

[5]  Man Zhang,et al.  Experiment and kinetic model study on modified potassium-based CO2 adsorbent , 2020 .

[6]  J. Ran,et al.  Particle-scale modeling of the simultaneous carbonation and sulfation in calcium looping for CO2 capture , 2020 .

[7]  Zhenshanl Li General rate equation theory for gas–solid reaction kinetics and its application to CaO carbonation , 2020 .

[8]  Huili Zhang,et al.  The chemical CO2 capture by carbonation-decarbonation cycles. , 2020, Journal of environmental management.

[9]  Yingjie Li,et al.  Thermochemical energy storage performance of Al2O3/CeO2 co-doped CaO-based material under high carbonation pressure , 2020, Applied Energy.

[10]  N. Seddon,et al.  Understanding the value and limits of nature-based solutions to climate change and other global challenges , 2020, Philosophical Transactions of the Royal Society B.

[11]  Hailong Li,et al.  Preparation of spherical Li4SiO4 pellets by novel agar method for high-temperature CO2 capture , 2020 .

[12]  Changlei Qin,et al.  Fabrication of efficient and stable Li4SiO4-based sorbent pellets via extrusion-spheronization for cyclic CO2 capture , 2020 .

[13]  B. Chalermsinsuwan,et al.  Computational fluid dynamics of sulfur dioxide and carbon dioxide capture using mixed feeding of calcium carbonate/calcium oxide in an industrial scale circulating fluidized bed boiler , 2019, Applied Energy.

[14]  Jian Sun,et al.  Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature , 2019, Applied Energy.

[15]  Xiaotong Ma,et al.  Preparation of a morph-genetic CaO-based sorbent using paper fibre as a biotemplate for enhanced CO2 capture , 2019, Chemical Engineering Journal.

[16]  Jian Sun,et al.  One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture , 2018, Chemical Engineering Journal.

[17]  J. Zhang,et al.  Performance of synthetic CaO-based sorbent pellets for CO2 capture and kinetic analysis , 2018, Fuel.

[18]  J. Ran,et al.  The consecutive calcination/sulfation in calcium looping for CO2 capture: Particle modeling and behaviour investigation , 2018 .

[19]  W. Yuan,et al.  Modeling of the carbonation kinetics of a synthetic CaO-based sorbent , 2013 .

[20]  P. Lan,et al.  A kinetic model of nano‐CaO reactions with CO2 in a sorption complex catalyst , 2012 .

[21]  Chunbo Wang,et al.  Simultaneous Carbonation and Sulfation of CaO in Oxy‐Fuel CFB Combustion , 2011 .

[22]  Ying Zheng,et al.  Development and Performance of CaO/La2O3 Sorbents during Calcium Looping Cycles for CO2 Capture , 2010 .

[23]  Paul S. Fennell,et al.  The calcium looping cycle for large-scale CO2 capture , 2010 .

[24]  Mónica Alonso,et al.  Application of the random pore model to the carbonation cyclic reaction , 2009 .

[25]  P. Smirniotis,et al.  Calcium Oxide Doped Sorbents for CO2 Uptake in the Presence of SO2 at High Temperatures , 2009 .

[26]  Mónica Alonso,et al.  Sulfation of CaO Particles in a Carbonation/Calcination Loop to Capture CO2 , 2008 .

[27]  John R. Grace,et al.  A discrete-pore-size-distribution-based gas–solid model and its application to the CaO+CO2 reaction , 2008 .

[28]  E. J. Anthony,et al.  Determination of intrinsic rate constants of the CaO–CO2 reaction , 2008 .

[29]  J. Carlos Abanades,et al.  CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles , 2006 .

[30]  John R. Grace,et al.  Modeling of Sorption-Enhanced Steam Reforming in a Dual Fluidized Bubbling Bed Reactor , 2006 .

[31]  J. Carlos Abanades,et al.  Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2 , 2005 .

[32]  Deuk Ki Lee,et al.  An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide , 2004 .

[33]  R. H. Borgwardt Calcination kinetics and surface area of dispersed limestone particles , 1985 .

[34]  D. D. Perlmutter,et al.  Effect of the product layer on the kinetics of the CO2‐lime reaction , 1983 .