Bayesian Analysis of Autocorrelated Ordered Categorical Data for Industrial Quality Monitoring

Presently available methods to analyze the link between explanatory variables and an ordered categorical response implicitly assume independence. This hypothesis is no longer valid when data are collected over time. We assume temporal dependence and introduce autocorrelation using a latent-variable formulation. Due to intractable distributions, we resort to Gibbs sampling for statistical inference within the Bayesian paradigm. Variable selection is also addressed and appears as a straightforward byproduct of this framework. We illustrate the method by analyzing on-line quality data that possess such autocorrelation.

[1]  S. Chib,et al.  Bayesian residual analysis for binary response regression models , 1995 .

[2]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[3]  Siddhartha Chib,et al.  Bayes regression with autoregressive errors : A Gibbs sampling approach , 1993 .

[4]  L. Fahrmeir,et al.  Multivariate statistical modelling based on generalized linear models , 1994 .

[5]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[6]  A C C Gibbs,et al.  Data Analysis , 2009, Encyclopedia of Database Systems.

[7]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[8]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[9]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[10]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[11]  R. H. Myers,et al.  A TUTORIAL ON GENERALIZED LINEAR MODELS , 1997 .

[12]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[13]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[14]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[15]  J. Anderson,et al.  Regression, Discrimination and Measurement Models for Ordered Categorical Variables , 1981 .

[16]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[17]  John Geweke,et al.  Statistical inference in the multinomial multiperiod probit model , 1997 .

[18]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[19]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[20]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[21]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[22]  Michael S. Hamada,et al.  Bayesian analysis of ordered categorical data from industrial experiments , 1996 .

[23]  A. Raftery Approximate Bayes factors and accounting for model uncertainty in generalised linear models , 1996 .