Adaptive Fuzzy Clustering Model Based on Internal Connectivity of All Data Points: Adaptive Fuzzy Clustering Model Based on Internal Connectivity of All Data Points

[1]  Junyi Shen,et al.  Detecting outlier samples in multivariate time series dataset , 2008, Knowl. Based Syst..

[2]  Sotirios Chatzis,et al.  Factor Analysis Latent Subspace Modeling and Robust Fuzzy Clustering Using $t$-Distributions , 2009, IEEE Transactions on Fuzzy Systems.

[3]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[4]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Tzong-Jer Chen,et al.  Fuzzy c-means clustering with spatial information for image segmentation , 2006, Comput. Medical Imaging Graph..

[6]  Lequan Min,et al.  Novel modified fuzzy c-means algorithm with applications , 2009, Digit. Signal Process..

[7]  Rajesh N. Davé,et al.  Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..

[8]  James M. Keller,et al.  A possibilistic fuzzy c-means clustering algorithm , 2005, IEEE Transactions on Fuzzy Systems.

[9]  Mauro Barni,et al.  Comments on "A possibilistic approach to clustering" , 1996, IEEE Trans. Fuzzy Syst..

[10]  Daoqiang Zhang,et al.  Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation , 2007, Pattern Recognit..

[11]  James C. Bezdek,et al.  On cluster validity for the fuzzy c-means model , 1995, IEEE Trans. Fuzzy Syst..

[12]  Srinivasan Parthasarathy,et al.  Fast mining of distance-based outliers in high-dimensional datasets , 2008, Data Mining and Knowledge Discovery.