Generation of auroral arc elements in an inverted-V arc due to ion cyclotron turbulence

By using a two-dimensional particle simulation it is shown that the electrostatic ion cyclotron turbulence driven by the field-aligned current on auroral field lines can lead to striations of the current into east–west aligned current sheets of ion gyroradius scale (La ∼ ρi). Physical mechanism for the striation can be identified with nonlinear mode couplings of ion cyclotron waves resulting in condensation of the wave energy into a zero-frequency mode. It is proposed that the auroral arc elements (La ∼ ρi), which collectively give rise to the inverted-V arc (Lυ ≫ ρi), can be produced by the east–west aligned striations of the field-aligned current on inverted-V field lines.

[1]  A. Hasegawa,et al.  Heating of heavy ions on auroral field lines , 1983 .

[2]  M. Ashour‐Abdalla,et al.  Ion-beam-driven electrostatic ion cyclotron instabilities , 1983 .

[3]  J. Kan Towards a unified theory of discrete auroras , 1982 .

[4]  R. Schunk,et al.  Energization of ionospheric ions by electrostatic hydrogen cyclotron waves , 1981 .

[5]  L. Lyons,et al.  Generation of ion‐conic distribution by upgoing ionospheric electrons , 1981 .

[6]  M. Ashour‐Abdalla,et al.  Acceleration of heavy ions on auroral field lines , 1981 .

[7]  M. Ashour‐Abdalla,et al.  Formation of a conical distribution and intense ion heating in the presence of hydrogen cyclotron waves. [in earth ionosphere] , 1981 .

[8]  W. Lee,et al.  Numerical simulations of electrostatic hydrogen cyclotron instabilities , 1981 .

[9]  J. Dawson,et al.  Simulation of the current‐driven electrostatic ion cyclotron instability , 1981 .

[10]  K. Papadopoulos,et al.  Stochastic acceleration of large M/Q ions by hydrogen cyclotron waves in the magnetosphere , 1980 .

[11]  P. Kintner,et al.  Simultaneous observations of energetic (keV) upstreaming and electrostatic hydrogen cyclotron waves , 1979 .

[12]  D. Klumpar,et al.  Heating of ions to superthermal energies in the topside ionosphere by electrostatic ion cyclotron waves , 1979 .

[13]  D. Klumpar Transversely accelerated ions - An ionospheric source of hot magnetospheric ions , 1979 .

[14]  C. Meng Electron precipitations and polar auroras , 1978 .

[15]  T. Davis,et al.  Observed characteristics of auroral forms , 1978 .

[16]  C.Z. Cheng,et al.  Theory and numerical simulations on collisionless drift instabilities in three dimensions , 1978 .

[17]  R. Sagdeev,et al.  Convective cells and anomalous plasma diffusion , 1978 .

[18]  R. Sagdeev,et al.  Excitation of convective cells by Alfven waves , 1978 .

[19]  H. Okuda,et al.  A Simulation Model for Studying Low-Frequency Microinstabilities , 1978 .

[20]  T. Potemra,et al.  Large‐scale characteristics of field‐aligned currents associated with substorms , 1978 .

[21]  P. Mizera,et al.  Signature of electric fields from high and low altitude particle distributions , 1977 .

[22]  E. Shelley,et al.  Observation of an ionospheric acceleration mechanism producing energetic (keV) ions primarily normal to the geomagnetic field direction , 1977 .

[23]  Joseph F. Fennell,et al.  Signatures of electric fields from high and low altitude farticles distributions , 1977 .

[24]  A. Egeland,et al.  Auroral vector electric field and particle comparisons, 2, Electrodynamics of an arc , 1977 .

[25]  Y. Kamide,et al.  The location of the field‐aligned currents with respect to discrete auroral arcs , 1976 .

[26]  John M. Dawson,et al.  Theory and numerical simulation on plasma diffusion across a magnetic field , 1973 .

[27]  L. Frank,et al.  Observations of charged particle precipitation into the auroral zone , 1971 .

[28]  J. Maggs,et al.  Measurements of the thicknesses of auroral structures. , 1968 .

[29]  J. S. Kim,et al.  Thickness of zenithal auroral arc over Fort Churchill, Canada , 1963 .

[30]  S. Akasofu Thickness of an active auroral curtain , 1961 .

[31]  J. Luhmann,et al.  The distribution of ion beams and conics below 8000 km , 1981 .