Au n+‐induced decomposition of N2O

Reactions between small gold cluster ions, Au, and N2O were studied in a Penning trap mass spectrometer. Gold clusters were produced by laser vaporization and injected into a Penning trap. After reaction times of 50–7000ms the products were detected by time-of-flight mass spectrometry. For the major reaction channel, Au + N2OAu1,2N + NO+, rates of (0.9±0.1)×10−12 cm3 s−1 and (2.4±0.4)×10−12 cm3 s−1 were determined which are about a factor 500 below the collision rate. The corresponding activation energies for N2O decomposition were estimated to lie below 0.6 eV and 0.3 eV. Additional products with small branching ratios were detected, viz. the ions Au1O+, Au1N2O+, Au2N+, Au2NO+, Au2N2O+, Au3O+, Au3N2O+, and Au4N2O+. This indicates a preference for nitrogen-oxygen bond rupture in the case of Au and Au, and for nitrogen-nitrogen bond rupture in the case of Au.

[1]  G. Dietrich,et al.  Collision induced dissociation of stored gold cluster ions , 1994 .

[2]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[3]  E. K. Parks,et al.  Temperature dependence of the reactions of small cobalt clusters with deuterium , 1993 .

[4]  J. K. Perry,et al.  Molecular complexes of small alkanes with cobalt(1 , 1993 .

[5]  S. Anderson,et al.  CHEMISTRY OF METAL AND SEMIMETAL CLUSTER IONS , 1992 .

[6]  Alan G. Marshall,et al.  Fourier transform ion cyclotron resonance mass spectrometry: technique developments , 1992 .

[7]  S. J. Riley Gas Phase Reactions of Transition Metal Clusters , 1992 .

[8]  R. Dunbar Infrared radiative cooling of gas‐phase ions , 1992 .

[9]  M. Irion A. M. Braun, M.-Th. Maurette, E. Oliveros: Photochemical Technology, J. Wiley & Sons. New York 1991, ISBN 0-471-92652-3, 559 Seiten, Preis: £ 95.00 (Erstveröffentlichung: Technologie Photochimique, Presses Polytechniques Romandes Lausanne 1986). , 1992 .

[10]  M. Cheeseman,et al.  Ionization potentials and reactivity of coinage metal clusters , 1992 .

[11]  M. Jarrold,et al.  Dissociation of large silicon clusters : the approach to bulk behavior , 1991 .

[12]  H. Schwarz,et al.  Organometallic chemistry in the gas phase , 1991 .

[13]  A. Kaldor,et al.  Gold clusters: reactions and deuterium uptake , 1991 .

[14]  T. Leisner,et al.  Production of “cold/hot” metal cluster ions: a modified laser vaporization source , 1991 .

[15]  P. Armentrout,et al.  Transition Metal Ion Mediated C-H and C-C Bond Activation of Alkanes: Dynamical Coupling between Entrance and Exit Channel Transition States , 1991 .

[16]  M. Irion,et al.  FTMS Studies of Sputtered Metal Cluster Ions (III): The Chemistry of Ni+n, Co+n, V+n, Ag+n, Au+n and Fe+n with C2H4, C6H6 or NH3 , 1990 .

[17]  H. Kluge,et al.  Quadrupole-detection FT-ICR mass spectrometry , 1990 .

[18]  R. Smalley,et al.  Fourier transform ion cyclotron resonance studies of H2 chemisorption on niobium cluster cations , 1988 .

[19]  C. Wilkins,et al.  Reactions of atomic gold ions with aliphatic and aromatic hydrocarbons and alkyl halides , 1987 .

[20]  L. Woeste,et al.  Bonding capabilities of nickel cluster ions: synthetic chemistry in a molecular beam , 1987 .

[21]  L. Schweikhard,et al.  In-flight capture of ions into a penning trap , 1986 .

[22]  M. Hamdan,et al.  A study of the reactions of F+ with neutral molecules at room temperature , 1986 .

[23]  Cox,et al.  Correspondence between electron binding energy and chemisorption reactivity of iron clusters. , 1985, Physical review letters.

[24]  M. Hamdan,et al.  Reactions of Br+ at room temperature: state-dependent reactivity of Br+ with O2 from 0.04 to 5 eV collision energy , 1984 .

[25]  M. Kappes,et al.  Gas-phase oxidation catalysis by transition-metal cations , 1981 .

[26]  D. Lister,et al.  Reactions of Cl+ at room temperature , 1980 .

[27]  A. B. Rakshit,et al.  Measurements of thermal energy neon ion—neutral reaction rate coefficients and product ion distributions , 1979 .

[28]  M. Bowers,et al.  Ion--polar molecule collisions. Conservation of angular momentum in the average dipole orientation theory. The AADO theory , 1978 .

[29]  M. Bowers,et al.  Near thermal energy charge transfer reactions of rare gas ions with diatomic and simple polyatomic molecules: The importance of Franck-Condon factors and energy resonance on the magnitude of the rate constants , 1974 .

[30]  F. Fehsenfeld,et al.  Termolecular Association Reactions of Mg, Ca, and Ba Ions , 1972 .

[31]  J. Beauchamp,et al.  Acidity, basicity, and ion-molecule reactions of phosphine in the gas phase by ion cyclotron resonance spectroscopy , 1970 .

[32]  D. D. Eley,et al.  The decomposition of nitrous oxide catalysed by palladium-gold alloy wires , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.