Simulating the formation of large-scale cosmic structure with particle-grid methods

Numerical simulations are an essential component of the study of the nonlinear growth and evolution of cosmic structures. After a brief description of the standard cosmological model, this work sets up the framework within which we can study the gravitational growth of density fluctuations in the universe and motivates the use of particle methods for the numerical modelling of these processes. The second part contains a description of the numerical techniques used to solve Poisson's equation for a very large number of self-gravitating particles in the cosmological context. The work concentrates on the common grid-based methods that are widely used for the largest cosmological simulations, and discusses the migration of these algorithms to parallel computer architectures.

[1]  F. Bouchet,et al.  Application of the Ewald method to cosmological N-body simulations , 1991 .

[2]  Rudolph Ernest Langer,et al.  Relativity And Modern Physics , 1925 .

[3]  Thomas L. Sterling,et al.  Pentium Pro Inside: I. A Treecode at 430 Gigaflops on ASCI Red, II. Price/Performance of $50/Mflop on Loki and Hyglac , 1997, ACM/IEEE SC 1997 Conference (SC'97).

[4]  H. Couchman,et al.  Mesh-refined P3M - A fast adaptive N-body algorithm , 1991 .

[5]  E. Müller,et al.  On the capabilities and limits of smoothed particle hydrodynamics , 1993 .

[6]  Toshikazu Ebisuzaki,et al.  A special-purpose computer for gravitational many-body problems , 1990, Nature.

[7]  Jun Makino,et al.  Performance and accuracy of a GRAPE‐3 system for collisionless N‐body simulations , 1998 .

[8]  Guohong Xu A new parallel N body gravity solver: TPM , 1994, astro-ph/9409021.

[9]  H.M.P. Couchman,et al.  Hydra: a parallel adaptive grid code , 1997 .

[10]  Guohong Xu Hydrodynamic and N-body schemes on an unstructured, adaptive mesh with applications to cosmological simulations , 1997 .

[11]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[12]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[13]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[14]  Roman Scoccimarro Transients from initial conditions: a perturbative analysis , 1998 .

[15]  P. Peebles Principles of Physical Cosmology , 1993 .

[16]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[17]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[18]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[19]  F. Pearce,et al.  A new parallel PM3 code for very large-scale cosmological simulations , 1998, astro-ph/9805096.

[20]  M. L. Norman,et al.  Simulating X-ray Clusters with Adaptive Mesh Refinement , 1995 .

[21]  G. Bryan,et al.  Cosmological Adaptive Mesh Refinement , 1998, astro-ph/9807121.

[22]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[23]  F. Pearce,et al.  Hydra: An Adaptive--Mesh Implementation of PPPM--SPH , 1994 .

[24]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[25]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[26]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[27]  Y. Zel’dovich Gravitational instability: An Approximate theory for large density perturbations , 1969 .

[28]  John Dubinski A parallel tree code , 1996 .