A Brain Module for Scalable Control of Complex, Multi-motor Threat Displays

Threat displays are a universal feature of agonistic interactions. Whether threats are part of a continuum of aggressive behaviors or separately controlled remains unclear. We analyze threats in Drosophila and show they are triggered by male cues and visual motion, and comprised of multiple motor elements that can be flexibly combined. We isolate a cluster of ∼3 neurons whose activity is necessary for threat displays but not for other aggressive behaviors, and whose artificial activation suffices to evoke naturalistic threats in solitary flies, suggesting that the neural control of threats is modular with respect to other aggressive behaviors. Artificially evoked threats suffice to repel opponents from a resource in the absence of contact aggression. Depending on its level of artificial activation, this neural threat module can evoke different motor elements in a threshold-dependent manner. Such scalable modules may represent fundamental "building blocks" of neural circuits that mediate complex multi-motor behaviors.

[1]  C. Darwin,et al.  The Expression of the Emotions in Man and Animals , 1956 .

[2]  N. Shah,et al.  Molecular and neural control of sexually dimorphic social behaviors , 2016, Current Opinion in Neurobiology.

[3]  Annegret L. Falkner,et al.  The neural circuits of mating and fighting in male mice , 2016, Current Opinion in Neurobiology.

[4]  A. Leonardo,et al.  A spike-timing mechanism for action selection , 2014, Nature Neuroscience.

[5]  David J. Anderson,et al.  P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila , 2015, eLife.

[6]  Herman A Dierick,et al.  A method for quantifying aggression in male Drosophila melanogaster , 2007, Nature Protocols.

[7]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[8]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[9]  D. Floreano,et al.  Mechanosensory Interactions Drive Collective Behaviour in Drosophila , 2014, Nature.

[10]  N. Shah,et al.  Representing Sex in the Brain, One Module at a Time , 2014, Neuron.

[11]  Neuroethology of male courtship in Drosophila: from the gene to behavior , 2014, Journal of Comparative Physiology A.

[12]  M. A. MacIver,et al.  Neuroscience Needs Behavior: Correcting a Reductionist Bias , 2017, Neuron.

[13]  W. R. Hess,et al.  Das subkortikale Zentrum der affektiven Abwehrreaktion. , 1943 .

[14]  Baerends Gp On Drive, Conflict and Instinct, and the Functional Organization of Behavior , 1976 .

[15]  Peter L. Hurd,et al.  Threat display in birds , 2001 .

[16]  W. Heiligenberg Processes Governing Behavioral States of Readiness , 1974 .

[17]  E. Kravitz,et al.  Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[18]  Salil S. Bidaye,et al.  Neuronal Control of Drosophila Courtship Song , 2011, Neuron.

[19]  von HOLST,et al.  Electrically controlled behavior. , 1962, Scientific American.

[20]  E. Kravitz,et al.  Learning and memory associated with aggression in Drosophila melanogaster , 2006, Proceedings of the National Academy of Sciences.

[21]  J. Koolhaas,et al.  The neurobiology of offensive aggression: Revealing a modular view , 2015, Physiology & Behavior.

[22]  Michael B. Reiser,et al.  Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs , 2016, eLife.

[23]  S. W. Emmons,et al.  Neural Circuits of Sexual Behavior in Caenorhabditis elegans. , 2018, Annual review of neuroscience.

[24]  Tetsuro Izumi,et al.  Modular Genetic Control of Sexually Dimorphic Behaviors , 2012, Cell.

[25]  V. Ruta,et al.  Multimodal Chemosensory Circuits Controlling Male Courtship in Drosophila , 2015, Neuron.

[26]  N. Jones,et al.  Observations and Experiments on Causation of Threat Displays of the Great Tit (Parus major) , 1968 .

[27]  Richard Shine Function and evolution of the frill of the frillneck lizard, Chlamydosaurus kingii (Sauria: Agamidae) , 1990 .

[28]  Jan Clemens,et al.  Sensorimotor Transformations Underlying Variability in Song Intensity during Drosophila Courtship , 2016, Neuron.

[29]  F. Díaz‐Fleischer,et al.  Target-invariant aggressive display in a tephritid fly , 2015, Behavioural Processes.

[30]  N. Tinbergen On aims and methods of Ethology , 2010 .

[31]  A. Daanje On Locomotory Movements in Birds and the Intention Movements Derived From Them , 1951 .

[32]  Dayu Lin,et al.  Collateral Pathways from the Ventromedial Hypothalamus Mediate Defensive Behaviors , 2015, Neuron.

[33]  Michael Bate,et al.  Altered Electrical Properties in DrosophilaNeurons Developing without Synaptic Transmission , 2001, The Journal of Neuroscience.

[34]  H. Carr,et al.  The behavior of pigeons , 2022 .

[35]  R. Hinde A COMPARATIVE STUDY OF THE COURTSHIP OF CERTAIN FINCHES (FRINGILLIDAE). , 2008 .

[36]  Daisuke Yamamoto,et al.  Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state , 2015, Nature Communications.

[37]  C. Darwin,et al.  The Expression of the Emotions in Man and Animals , 1872 .

[38]  Appetites and Aversions as Constituents of Instincts. , 1918, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Ary A. Hoffmann,et al.  A laboratory study of male territoriality in the sibling species Drosophila melanogaster and D. simulans , 1987, Animal Behaviour.

[40]  E. Kravitz,et al.  Pheromonal and Behavioral Cues Trigger Male-to-Female Aggression in Drosophila , 2010, PLoS biology.

[41]  M. Koganezawa,et al.  Genes and circuits of courtship behaviour in Drosophila males , 2013, Nature Reviews Neuroscience.

[42]  P. Klopfer,et al.  The Foundations of Ethology , 1981 .

[43]  David J. Anderson,et al.  Ventromedial hypothalamic neurons control a defensive emotion state , 2015, eLife.

[44]  Michael H Dickinson,et al.  Visual stimulation of saccades in magnetically tethered Drosophila , 2006, Journal of Experimental Biology.

[45]  Pietro Perona,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A common genetic target for environmental and heritable influences on aggressiveness in Drosophila , 2008 .

[46]  David J. Anderson,et al.  Toward a Science of Computational Ethology , 2014, Neuron.

[47]  H. Lipp,et al.  Threat, attack and flight elicited by electrical stimulation of the ventromedial hypothalamus of the marmoset monkey Callithrix jacchus. , 1978, Brain, behavior and evolution.

[48]  M. Heisenberg,et al.  Octopamine in Male Aggression of Drosophila , 2008, Current Biology.

[49]  David J. Anderson,et al.  Internal States and Behavioral Decision-Making: Toward an Integration of Emotion and Cognition. , 2014, Cold Spring Harbor symposia on quantitative biology.

[50]  David J. Anderson,et al.  Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin , 2013, Nature Methods.

[51]  David J. Anderson,et al.  Behavioral Responses to a Repetitive Visual Threat Stimulus Express a Persistent State of Defensive Arousal in Drosophila , 2015, Current Biology.

[52]  David J. Anderson,et al.  Hierarchical chemosensory regulation of male-male social interactions in Drosophila , 2011, Nature Neuroscience.

[53]  Jai Y. Yu,et al.  Cellular Organization of the Neural Circuit that Drives Drosophila Courtship Behavior , 2010, Current Biology.

[54]  Michael Dickinson,et al.  The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster , 2014, Journal of Experimental Biology.

[55]  Soh Kohatsu,et al.  Female Contact Activates Male-Specific Interneurons that Trigger Stereotypic Courtship Behavior in Drosophila , 2011, Neuron.

[56]  W. O. Friesen,et al.  Neuronal control of leech behavior , 2005, Progress in Neurobiology.

[57]  Pietro Perona,et al.  Tachykinin-Expressing Neurons Control Male-Specific Aggressive Arousal in Drosophila , 2014, Cell.

[58]  David J. Anderson,et al.  Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila , 2009, Nature.

[59]  M Andersson,et al.  Why are there so many threat displays? , 1980, Journal of theoretical biology.

[60]  M. Dow,et al.  Aggression and mating success in Drosophila melanogaster , 1975, Nature.

[61]  M. Koganezawa,et al.  The Neural Circuitry that Functions as a Switch for Courtship versus Aggression in Drosophila Males , 2016, Current Biology.

[62]  E. Kravitz,et al.  Aggression and courtship in Drosophila: pheromonal communication and sex recognition , 2013, Journal of Comparative Physiology A.

[63]  M. Pankratz,et al.  Single Serotonergic Neurons that Modulate Aggression in Drosophila , 2014, Current Biology.

[64]  A. Stokes,et al.  Agonistic Behaviour Among Blue Tits At a Winter Feeding Station , 1962 .

[65]  David J. Anderson,et al.  Scalable Control of Mounting and Attack by ESR1+ Neurons in the Ventromedial Hypothalamus , 2014, Nature.

[66]  J M Smith Game theory and the evolution of behaviour , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[67]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[68]  E. Kravitz,et al.  Fighting fruit flies: A model system for the study of aggression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Jan Clemens,et al.  Discovery of a New Song Mode in Drosophila Reveals Hidden Structure in the Sensory and Neural Drivers of Behavior , 2018, Current Biology.

[70]  E. Kravitz,et al.  Neurobiology of Escalated Aggression and Violence , 2007, The Journal of Neuroscience.

[71]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[72]  G. Rubin,et al.  Genetic Reagents for Making Split-GAL4 Lines in Drosophila , 2017, Genetics.

[73]  Desmond Morris,et al.  "Typical Intensity" and Its Relation To the Problem of Ritualisation , 1957 .

[74]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[75]  M. E. Jacobs Influence of Light on Mating of Drosophila Melanogaster , 1960 .

[76]  Kristin Branson,et al.  JAABA: interactive machine learning for automatic annotation of animal behavior , 2013, Nature Methods.

[77]  M. Moynihan Types of Hostile Display , 1955 .

[78]  G. Baerends On drive, conflict and instinct, and the functional organization of behavior. , 1976, Progress in brain research.

[79]  Weizhe Hong,et al.  Neural Circuit Mechanisms of Social Behavior , 2018, Neuron.

[80]  Stefan R. Pulver,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[81]  David J. Anderson,et al.  A Circuit Node that Integrates Convergent Input from Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in Drosophila , 2017, Neuron.

[82]  O. Leimar,et al.  The function of threat display in wintering great tits , 2003, Animal Behaviour.