Na2FeP2O7 as a positive electrode material for rechargeable aqueous sodium-ion batteries

An iron-based pyrophosphate compound, Na2FeP2O7, is investigated as a positive electrode material for aqueous sodium-ion batteries for the first time. The high rate capability and good cyclability of this material in aqueous electrolytes are advantageous for low-cost and safe battery systems.

[1]  J. Dahn,et al.  Rechargeable Lithium Batteries with Aqueous Electrolytes , 1994, Science.

[2]  J. Choi,et al.  Anomalous manganese activation of a pyrophosphate cathode in sodium ion batteries: a combined experimental and theoretical study. , 2013, Journal of the American Chemical Society.

[3]  Jin Yi,et al.  Recent Progress in Aqueous Lithium‐Ion Batteries , 2012 .

[4]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[5]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[6]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[7]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[8]  Xinping Ai,et al.  A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry , 2013 .

[9]  Jay F. Whitacre,et al.  An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications , 2012 .

[10]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[11]  Takayuki Komatsu,et al.  Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery , 2012 .

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Sai-Cheong Chung,et al.  A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries , 2013 .

[14]  B. Elouadi,et al.  Study of the Crystal Structures of Sodium Magnesium and Sodium Nickel Diphosphates , 2000 .

[15]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[16]  Yuki Yamada,et al.  Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries , 2013 .

[17]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[18]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[19]  Ramazan Kahraman,et al.  Na2FeP2O7 as a Promising Iron‐Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study , 2013 .

[20]  Shinichi Komaba,et al.  A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries , 2013 .

[21]  Aravindaraj G. Kannan,et al.  Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes , 2013 .

[22]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[23]  Jay F. Whitacre,et al.  Relating Synthesis Conditions and Electrochemical Performance for the Sodium Intercalation Compound Na4Mn9O18 in Aqueous Electrolyte , 2010 .

[24]  Linda F. Nazar,et al.  Na4‐αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na‐ion Batteries , 2013 .