Ultralow density, hollow silica foams produced through interfacial reaction and their exceptional properties for environmental and energy applications

We report a novel, facile, and reproducible method for large-scale production of highly porous, hollow silica foams (hollow spheres) with a robust ultrathin shell of several nanometres through a simple, one-step, bubble-controlled, interfacial hydrolysis reaction. This material has exceptional properties, including ultralow density (0.028 g cm−3, approaching 99% porosity), good thermal stability up to 1000 °C, an exceptionally high capacity for oil uptake from mixed solvents (up to 25.6 cm3 g−1), and a very low thermal conductivity comparable to ultralow density silica aerogels.

[1]  Y. Xiong,et al.  Large-scale fabrication of TiO2 hierarchical hollow spheres. , 2006, Inorganic chemistry.

[2]  Jing Kong,et al.  Superwetting nanowire membranes for selective absorption. , 2008, Nature nanotechnology.

[3]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[4]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[5]  A. Watanabe,et al.  Photoinduced high-quality ultrathin SiO2 film from hybrid nanosheet at room temperature. , 2008, Journal of the American Chemical Society.

[6]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[7]  C. Feldmann,et al.  Nanoscale γ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality , 2007 .

[8]  Frank Caruso,et al.  Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres , 2001 .

[9]  H. Zeng,et al.  Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. , 2007, Journal of the American Chemical Society.

[10]  P. Mandal,et al.  Hollow spheres to nanocups: tuning the morphology and magnetic properties of single-crystalline alpha-Fe2O3 nanostructures. , 2008, Angewandte Chemie.

[11]  Xun Wang,et al.  A general chemical conversion method to various semiconductor hollow structures. , 2005, Small.

[12]  Lawrence W. Hrubesh,et al.  Thermal properties of organic and inorganic aerogels , 1994 .

[13]  Lei Jiang,et al.  Hollow Micro/Nanomaterials with Multilevel Interior Structures , 2009 .

[14]  R. Frost,et al.  Porous Materials for Oil Spill Cleanup: A Review of Synthesis and Absorbing Properties , 2003 .

[15]  T. Kunitake,et al.  Efficient fabrication and enhanced photocatalytic activities of 3D-ordered films of titania hollow spheres. , 2006, The journal of physical chemistry. B.

[16]  G. D. Chukin An IR-spectroscopic study of the surface properties of fluorinated silica gel , 1974 .

[17]  H. Hirashima,et al.  Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. , 2007, Journal of colloid and interface science.

[18]  E. I. Ko,et al.  Preparing catalytic materials by the sol-gel method , 1995 .

[19]  C. B. Carter,et al.  Ceramic Materials: Science and Engineering , 2013 .

[20]  Yong Wang,et al.  One‐Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals‐Composed Porous Multishell and Their Gas‐Sensing Properties , 2007 .

[21]  T. Valdés-Solís,et al.  Synthesis of Highly Uniform Mesoporous Sub-Micrometric Capsules of Silicon Oxycarbide and Silica , 2007 .

[22]  Shih‐Yuan Lu,et al.  Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities. , 2008, The journal of physical chemistry. B.

[23]  Yunfeng Lu,et al.  Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[24]  L. Archer,et al.  Hollow Micro‐/Nanostructures: Synthesis and Applications , 2008 .

[25]  G. Scherer Recent progress in drying of gels , 1992 .

[26]  J. Lee,et al.  Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage , 2006 .

[27]  Jiaguo Yu,et al.  Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self‐Transformation , 2006 .

[28]  U. Schubert,et al.  Aerogels-Airy Materials: Chemistry, Structure, and Properties. , 1998, Angewandte Chemie.

[29]  Hyunjoon Song,et al.  A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p‐Nitrophenol , 2008 .

[30]  A. Imhof,et al.  Synthesis of Monodisperse Colloidal Spheres, Capsules, and Microballoons by Emulsion Templating , 2005 .

[31]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[32]  Martin Scheringer,et al.  Nanoecotoxicology: Environmental risks of nanomaterials. , 2008, Nature nanotechnology.

[33]  André R Studart,et al.  Ultrastable particle-stabilized foams. , 2006, Angewandte Chemie.

[34]  M. Fuji,et al.  A New Model for the Synthesis of Hollow Particles via the Bubble Templating Method , 2009 .

[35]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[36]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[37]  Loïc Bertrand,et al.  Titelbild: Zusammensetzung und Aufbau des berühmten Stradivari‐Lackes (Angew. Chem. 1/2010) , 2010 .

[38]  C. Sotiriou-Leventis,et al.  Nanoengineering Strong Silica Aerogels , 2002 .

[39]  E. Le Bourhis,et al.  ORMOSIL thin films: tuning mechanical properties via a nanochemistry approach. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[40]  U. Beck,et al.  Mechanical properties of SiO2 and Si3N4 coatings: a BAM/NIST co-operative project , 1998 .

[41]  G. Evans,et al.  Movement of fine particles on an air bubble surface studied using high-speed video microscopy. , 2004, Journal of colloid and interface science.