Modulation of the primary auditory thalamus when recognising speech with background noise

Sensory thalami are central sensory pathway stations for information processing. Their role for human cognition and perception, however, remains unclear. Recent evidence suggests a specific involvement of the sensory thalami in speech recognition. In particular, the auditory thalamus (medial geniculate body, MGB) response is modulated by speech recognition tasks and the amount of this task-dependent modulation is associated with speech recognition abilities. Here we tested the specific hypothesis that this behaviorally relevant modulation is present in the MGB subsection that corresponds to the primary auditory pathway (i.e., the ventral MGB [vMGB]). We used ultra-high field 7T fMRI to identify the vMGB, and found a significant positive correlation between the amount of task-dependent modulation and the speech recognition performance across participants within left vMGB, but not within the other MGB subsections. These results imply that modulation of thalamic driving input to the auditory cortex facilitates speech recognition.

[1]  C. Wernicke Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis , 1874 .

[2]  D. Weenink Experimental Phonetics , 1901, Nature.

[3]  G Mann,et al.  ON THE THALAMUS * , 1905, British medical journal.

[4]  R. Fisher FREQUENCY DISTRIBUTION OF THE VALUES OF THE CORRELATION COEFFIENTS IN SAMPLES FROM AN INDEFINITELY LARGE POPU;ATION , 1915 .

[5]  Morest Dk The neuronal architecture of the medial geniculate body of the cat , 1964 .

[6]  D. Morest THE NEURONAL ARCHITECTURE OF THE MEDIAL GENICULATE BODY OF THE CAT. , 1964, Journal of anatomy.

[7]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[8]  P. Tallal,et al.  Developmental aphasia: The perception of brief vowels and extended stop consonants , 1975, Neuropsychologia.

[9]  Trichur Raman Vidyasagar,et al.  The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. , 1983, The Journal of physiology.

[10]  Michael B. Calford,et al.  The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  J. Winer The human medial geniculate body , 1984, Hearing Research.

[12]  E. Jones,et al.  The Thalamus , 1985, Springer US.

[13]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[14]  E. Rouiller,et al.  Origin of afferents to physiologically defined regions of the medial geniculate body of the cat: ventral and dorsal divisions , 1985, Hearing Research.

[15]  T. Imig,et al.  Tonotopic organization in ventral nucleus of medial geniculate body in the cat. , 1985, Journal of neurophysiology.

[16]  E. Rouiller,et al.  Functional organization of the ventral division of the medial geniculate body of the cat: Evidence for a rostro-caudal gradient of response properties and cortical projections , 1989, Hearing Research.

[17]  Raymond D. Kent,et al.  Acoustic Analysis of Speech , 2009 .

[18]  F. Gonzalez-Lima,et al.  Cytochrome oxidase activity in the auditory system of the mouse: A qualitative and quantitative histochemical study , 1994, Neuroscience.

[19]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[20]  A. Galaburda,et al.  Evidence for aberrant auditory anatomy in developmental dyslexia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[22]  Steven L. Miller,et al.  Language Comprehension in Language-Learning Impaired Children Improved with Acoustically Modified Speech , 1996, Science.

[23]  G. Ehret The auditory cortex , 1997, Journal of Comparative Physiology A.

[24]  A. Morel,et al.  Multiarchitectonic and stereotactic atlas of the human thalamus , 1997, The Journal of comparative neurology.

[25]  J. Hahm,et al.  Cortically induced thalamic plasticity in the primate somatosensory system , 1998, Nature Neuroscience.

[26]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Kaas,et al.  Thalamocortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[28]  M. Nicolelis,et al.  Immediate thalamic sensory plasticity depends on corticothalamic feedback. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Winer,et al.  Neural architecture of the rat medial geniculate body , 1999, Hearing Research.

[30]  Richard S. J. Frackowiak,et al.  Representation of the temporal envelope of sounds in the human brain. , 2000, Journal of neurophysiology.

[31]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[32]  M. Nicolelis,et al.  Feature article: the structure and function of dynamic cortical and thalamic receptive fields. , 2001, Cerebral cortex.

[33]  J. Winer,et al.  Layer V in cat primary auditory cortex (AI): Cellular architecture and identification of projection neurons , 2001, The Journal of comparative neurology.

[34]  H. Killackey,et al.  Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain , 2001, Neuroscience.

[35]  S. Baron-Cohen,et al.  The Autism-Spectrum Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, Malesand Females, Scientists and Mathematicians , 2001, Journal of autism and developmental disorders.

[36]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[37]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[38]  J. Rademacher,et al.  Stereotaxic Localization, Intersubject Variability, and Interhemispheric Differences of the Human Auditory Thalamocortical System , 2002, NeuroImage.

[39]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[40]  J. Saffran Statistical Language Learning , 2003 .

[41]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[42]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[43]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[44]  Joseph E LeDoux,et al.  Response properties of single units in areas of rat auditory thalamus that project to the amygdala , 2004, Experimental Brain Research.

[45]  P. Bolton,et al.  Speech-in-noise perception in high-functioning individuals with autism or Asperger's syndrome. , 2004, Journal of child psychology and psychiatry, and allied disciplines.

[46]  R. Deichmann,et al.  Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature.

[47]  Powen Ru,et al.  Multiresolution spectrotemporal analysis of complex sounds. , 2005, The Journal of the Acoustical Society of America.

[48]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Lee M. Miller,et al.  Auditory thalamocortical transformation: structure and function , 2005, Trends in Neurosciences.

[50]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[51]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[52]  F. Ramus,et al.  A double dissociation between sensorimotor impairments and reading disability: A comparison of autistic and dyslexic children , 2006, Cognitive neuropsychology.

[53]  A. Sillito,et al.  Looking back: corticothalamic feedback and early visual processing , 2006, Trends in Neurosciences.

[54]  A. Sillito,et al.  Always returning: feedback and sensory processing in visual cortex and thalamus , 2006, Trends in Neurosciences.

[55]  Lisa A. de la Mothe,et al.  Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions , 2006, The Journal of comparative neurology.

[56]  A. Palmer,et al.  Identification of subdivisions in the medial geniculate body of the guinea pig , 2007, Hearing Research.

[57]  Xiao Han,et al.  Atlas Renormalization for Improved Brain MR Image Segmentation Across Scanner Platforms , 2007, IEEE Transactions on Medical Imaging.

[58]  A. Sillito,et al.  Corticothalamic feedback enhances stimulus response precision in the visual system , 2007, Proceedings of the National Academy of Sciences.

[59]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[60]  Stefan J. Kiebel,et al.  Simulation of talking faces in the human brain improves auditory speech recognition , 2008, Proceedings of the National Academy of Sciences.

[61]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[62]  Karl J. Friston,et al.  A Hierarchy of Time-Scales and the Brain , 2008, PLoS Comput. Biol..

[63]  S. Sherman,et al.  Evidence for nonreciprocal organization of the mouse auditory thalamocortical‐corticothalamic projection systems , 2008, The Journal of comparative neurology.

[64]  D. Bendor,et al.  Neural coding of temporal information in auditory thalamus and cortex , 2008, Neuroscience.

[65]  Jacob Benesty,et al.  Springer handbook of speech processing , 2007, Springer Handbooks.

[66]  R. Patterson,et al.  Task-Dependent Modulation of Medial Geniculate Body Is Behaviorally Relevant for Speech Recognition , 2008, Current Biology.

[67]  J. Buitelaar,et al.  Intact Spectral but Abnormal Temporal Processing of Auditory Stimuli in Autism , 2009, Journal of autism and developmental disorders.

[68]  Roy D. Patterson,et al.  The role of glottal pulse rate and vocal tract length in the perception of speaker identity , 2009, INTERSPEECH.

[69]  Karl J. Friston,et al.  Predictive coding under the free-energy principle , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[70]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[71]  N. Kraus,et al.  Context-Dependent Encoding in the Human Auditory Brainstem Relates to Hearing Speech in Noise: Implications for Developmental Dyslexia , 2009, Neuron.

[72]  Frédéric E. Theunissen,et al.  The Modulation Transfer Function for Speech Intelligibility , 2009, PLoS Comput. Biol..

[73]  G. Christianson,et al.  Stimulus-Specific Adaptation Occurs in the Auditory Thalamus , 2009, The Journal of Neuroscience.

[74]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[75]  Charles C Lee,et al.  Convergence of thalamic and cortical pathways in cat auditory cortex , 2011, Hearing Research.

[76]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[77]  Edward L. Bartlett,et al.  Fine frequency tuning in monkey auditory cortex and thalamus. , 2011, Journal of neurophysiology.

[78]  M. Malmierca,et al.  Effect of Auditory Cortex Deactivation on Stimulus-Specific Adaptation in the Medial Geniculate Body , 2011, The Journal of Neuroscience.

[79]  J. Linden,et al.  Physiological differences between histologically defined subdivisions in the mouse auditory thalamus , 2011, Hearing Research.

[80]  Y. Saalmann,et al.  Cognitive and Perceptual Functions of the Visual Thalamus , 2011, Neuron.

[81]  H. Ojima,et al.  Auditory Cortical Projections to the Medial Geniculate Body , 2011 .

[82]  T. Hackett,et al.  Linking Topography to Tonotopy in the Mouse Auditory Thalamocortical Circuit , 2011, The Journal of Neuroscience.

[83]  Xiaoqin Wang,et al.  Correlation of neural response properties with auditory thalamus subdivisions in the awake marmoset. , 2011, Journal of neurophysiology.

[84]  N. Kraus,et al.  Human inferior colliculus activity relates to individual differences in spoken language learning. , 2012, Journal of neurophysiology.

[85]  R. Romo,et al.  Coding perceptual discrimination in the somatosensory thalamus , 2012, Proceedings of the National Academy of Sciences.

[86]  S. Sherman,et al.  Intrinsic modulators of auditory thalamocortical transmission , 2012, Hearing Research.

[87]  S. Kiebel,et al.  Dysfunction of the auditory thalamus in developmental dyslexia , 2012, Proceedings of the National Academy of Sciences.

[88]  Jeff H. Duyn,et al.  The future of ultra-high field MRI and fMRI for study of the human brain , 2012, NeuroImage.

[89]  Satrajit S. Ghosh,et al.  Optimized Design and Analysis of Sparse-Sampling fMRI Experiments , 2013, Front. Neurosci..

[90]  Angela D Friederici,et al.  The language network , 2012, Current Opinion in Neurobiology.

[91]  F. Ehlen,et al.  Functional roles of the thalamus for language capacities , 2013, Front. Syst. Neurosci..

[92]  K. Shibuki,et al.  Dual compartments of the ventral division of the medial geniculate body projecting to the core region of the auditory cortex in C57BL/6 mice , 2013, Neuroscience Research.

[93]  Charles C Lee Thalamic and cortical pathways supporting auditory processing , 2013, Brain and Language.

[94]  Kazuo Imaizumi,et al.  Auditory Thalamocortical Transformations , 2014, Encyclopedia of Computational Neuroscience.

[95]  Essa Yacoub,et al.  Processing of frequency and location in human subcortical auditory structures , 2015, Scientific Reports.

[96]  Stefania S. Moro,et al.  Evidence of multisensory plasticity: Asymmetrical medial geniculate body in people with one eye , 2015, NeuroImage: Clinical.

[97]  Richard McElreath,et al.  Statistical Rethinking: A Bayesian Course with Examples in R and Stan , 2015 .

[98]  M. Malmierca,et al.  The cortical modulation of stimulus-specific adaptation in the auditory midbrain and thalamus: a potential neuronal correlate for predictive coding , 2015, Front. Syst. Neurosci..

[99]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[100]  R. Kanzaki,et al.  Microelectrode mapping of tonotopic, laminar, and field-specific organization of thalamo-cortical pathway in rat , 2016, Neuroscience.

[101]  K. Shibuki,et al.  Reconsidering Tonotopic Maps in the Auditory Cortex and Lemniscal Auditory Thalamus in Mice , 2017, Front. Neural Circuits.

[102]  Johannes C. Dahmen,et al.  Thalamic input to auditory cortex is locally heterogeneous but globally tonotopic , 2017, eLife.

[103]  A. Anwander,et al.  Altered Structural Connectivity of the Left Visual Thalamus in Developmental Dyslexia , 2017, Current Biology.

[104]  B. Forstmann,et al.  Comparing functional MRI protocols for small, iron‐rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T , 2017, Human brain mapping.

[105]  Tobias U. Hauser,et al.  The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data , 2017, Journal of Neuroscience Methods.

[106]  Katharina von Kriegstein,et al.  Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition , 2018, NeuroImage.

[107]  A. Sillito,et al.  Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback , 2016, Cerebral cortex.

[108]  Hiroki Terashima,et al.  Direct Relay Pathways from Lemniscal Auditory Thalamus to Secondary Auditory Field in Mice , 2018, Cerebral cortex.

[109]  Hiroki Terashima,et al.  Corrigendum: Direct Relay Pathways from Lemniscal Auditory Thalamus to Secondary Auditory Field in Mice , 2019, Cerebral cortex.

[110]  Nai Ding,et al.  Prior Knowledge Guides Speech Segregation in Human Auditory Cortex , 2019, Cerebral cortex.

[111]  Hans J. Johnson,et al.  Advanced Normalization Tools (ANTs) , 2020 .