A posteriori error analysis of a mixed virtual element method for a nonlinear Brinkman model of porous media flow

Abstract In this paper we present an a posteriori error analysis of a mixed-VEM discretization for a nonlinear Brinkman model of porous media flow, which has been proposed by the authors in a previous work. Therein, the system is formulated in terms of a pseudostress tensor and the velocity gradient, whereas the velocity and the pressure of the fluid are computed via postprocessing formulas. Furthermore, the well-posedness of the associated augmented formulation along with a priori error bounds for the discrete scheme also were established. We now propose reliable and efficient residual-based a posteriori error estimates for a computable approximation of the virtual solution associated to the aforementioned problem. The resulting error estimator is fully computable from the degrees of freedom of the solutions and applies on very general polygonal meshes. For the analysis we make use of a global inf–sup condition, Helmholtz decomposition, local approximation properties of interpolation operators and inverse inequalities together with localization arguments based on bubble functions. Finally, we provide some numerical results confirming the properties of our estimator and illustrating the good performance of the associated adaptive algorithm.

[1]  Gabriel N. Gatica,et al.  A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows , 2011 .

[2]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[3]  Filánder A. Sequeira,et al.  A mixed virtual element method for a nonlinear Brinkman model of porous media flow , 2018 .

[4]  David Mora,et al.  A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..

[5]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[6]  G. Vacca An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .

[7]  G. Gatica,et al.  Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .

[8]  Lourenço Beirão da Veiga,et al.  H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.

[9]  Gabriel N. Gatica,et al.  A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .

[10]  Gabriel N. Gatica,et al.  A mixed virtual element method for the Brinkman problem , 2017 .

[11]  Guillermo Hauke,et al.  Stabilized virtual element methods for the unsteady incompressible Navier–Stokes equations , 2019, Calcolo.

[12]  Gabriel N. Gatica,et al.  A Mixed Virtual Element Method for Quasi-Newtonian Stokes Flows , 2018, SIAM J. Numer. Anal..

[13]  Gabriel N. Gatica,et al.  Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow , 2015 .

[14]  David Mora,et al.  A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations , 2017, IMA Journal of Numerical Analysis.

[15]  Alessandro Russo,et al.  $$H({\text {div}})$$H(div) and $$H(\mathbf{curl})$$H(curl)-conforming virtual element methods , 2016 .

[16]  Manuel E. Solano,et al.  A priori and a posteriori error analyses of a high order unfitted mixed-FEM for Stokes flow , 2020 .

[17]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[18]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[19]  Stefano Berrone,et al.  A residual a posteriori error estimate for the Virtual Element Method , 2017 .

[20]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[21]  Xin Liu,et al.  A nonconforming virtual element method for the Stokes problem on general meshes , 2017 .

[22]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[23]  Gabriel N. Gatica,et al.  A mixed virtual element method for the Navier–Stokes equations , 2018, Mathematical Models and Methods in Applied Sciences.

[24]  Xin Liu,et al.  The nonconforming virtual element method for the Navier-Stokes equations , 2018, Advances in Computational Mathematics.

[25]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[26]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[27]  Gianmarco Manzini,et al.  The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..

[28]  M. Alvarez,et al.  A posteriori error analysis for a viscous flow-transport problem , 2016 .

[29]  Giuseppe Vacca,et al.  Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..

[30]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[31]  Glaucio H. Paulino,et al.  A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method (VEM) , 2019, Computer Methods in Applied Mechanics and Engineering.