A posteriori error analysis of a mixed virtual element method for a nonlinear Brinkman model of porous media flow
暂无分享,去创建一个
[1] Gabriel N. Gatica,et al. A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows , 2011 .
[2] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[3] Filánder A. Sequeira,et al. A mixed virtual element method for a nonlinear Brinkman model of porous media flow , 2018 .
[4] David Mora,et al. A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..
[5] Richard S. Falk,et al. Basic principles of mixed Virtual Element Methods , 2014 .
[6] G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .
[7] G. Gatica,et al. Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .
[8] Lourenço Beirão da Veiga,et al. H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.
[9] Gabriel N. Gatica,et al. A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .
[10] Gabriel N. Gatica,et al. A mixed virtual element method for the Brinkman problem , 2017 .
[11] Guillermo Hauke,et al. Stabilized virtual element methods for the unsteady incompressible Navier–Stokes equations , 2019, Calcolo.
[12] Gabriel N. Gatica,et al. A Mixed Virtual Element Method for Quasi-Newtonian Stokes Flows , 2018, SIAM J. Numer. Anal..
[13] Gabriel N. Gatica,et al. Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow , 2015 .
[14] David Mora,et al. A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations , 2017, IMA Journal of Numerical Analysis.
[15] Alessandro Russo,et al. $$H({\text {div}})$$H(div) and $$H(\mathbf{curl})$$H(curl)-conforming virtual element methods , 2016 .
[16] Manuel E. Solano,et al. A priori and a posteriori error analyses of a high order unfitted mixed-FEM for Stokes flow , 2020 .
[17] G. Gatica. A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .
[18] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[19] Stefano Berrone,et al. A residual a posteriori error estimate for the Virtual Element Method , 2017 .
[20] L. Beirao da Veiga,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .
[21] Xin Liu,et al. A nonconforming virtual element method for the Stokes problem on general meshes , 2017 .
[22] Gianmarco Manzini,et al. Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .
[23] Gabriel N. Gatica,et al. A mixed virtual element method for the Navier–Stokes equations , 2018, Mathematical Models and Methods in Applied Sciences.
[24] Xin Liu,et al. The nonconforming virtual element method for the Navier-Stokes equations , 2018, Advances in Computational Mathematics.
[25] Emmanuil H. Georgoulis,et al. A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.
[26] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[27] Gianmarco Manzini,et al. The NonConforming Virtual Element Method for the Stokes Equations , 2016, SIAM J. Numer. Anal..
[28] M. Alvarez,et al. A posteriori error analysis for a viscous flow-transport problem , 2016 .
[29] Giuseppe Vacca,et al. Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes , 2017, SIAM J. Numer. Anal..
[30] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[31] Glaucio H. Paulino,et al. A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method (VEM) , 2019, Computer Methods in Applied Mechanics and Engineering.