An isotopically distinct Zealandia–Antarctic mantle domain in the Southern Ocean

[1]  R. Aster,et al.  The nature and evolution of mantle upwelling at Ross Island, Antarctica, with implications for the source of HIMU lavas , 2018, Earth and Planetary Science Letters.

[2]  J. Lin,et al.  Rapid transition from continental breakup to igneous oceanic crust in the South China Sea , 2018, Nature Geoscience.

[3]  A. Deuss,et al.  SP12RTS: a degree-12 model of shear- and compressional-wave velocity for Earth's mantle , 2016 .

[4]  J. Bryce,et al.  Submarine and subaerial lavas in the West Antarctic Rift System: Temporal record of shifting magma source components from the lithosphere and asthenosphere , 2015 .

[5]  W. White Probing the Earth’s Deep Interior through Geochemistry , 2015 .

[6]  Barbara Romanowicz,et al.  Broad plumes rooted at the base of the Earth's mantle beneath major hotspots , 2015, Nature.

[7]  A. Deuss,et al.  SP 12 RTS : a degree-12 model of shear-and compressional-wave velocity for Earth ’ s mantle , 2015 .

[8]  D. Wiens,et al.  Imaging the Antarctic mantle using adaptively parameterized P-wave tomography: Evidence for heterogeneous structure beneath West Antarctica , 2014 .

[9]  Andreas Kipf,et al.  Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism , 2014 .

[10]  Albrecht W. Hofmann,et al.  3.3 – Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements , 2014 .

[11]  Barbara Romanowicz,et al.  Waveform Tomography Reveals Channeled Flow at the Base of the Oceanic Asthenosphere , 2013, Science.

[12]  F. Albarède,et al.  Pb and Hf isotope variations along the Southeast Indian Ridge and the dynamic distribution of MORB source domains in the upper mantle , 2013 .

[13]  Charles H. Langmuir,et al.  The mean composition of ocean ridge basalts , 2013 .

[14]  K. Grönvold,et al.  Short length scale mantle heterogeneity beneath Iceland probed by glacial modulation of melting , 2012 .

[15]  Maria Seton,et al.  Global continental and ocean basin reconstructions since 200 Ma , 2012 .

[16]  John H. Woodhouse,et al.  S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements , 2011 .

[17]  M. Moreira,et al.  Geochemical portray of the Pacific Ridge: New isotopic data and statistical techniques , 2011 .

[18]  F. Hauff,et al.  Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic Plateaus , 2010 .

[19]  F. Hauff,et al.  Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia , 2010 .

[20]  P. Armienti,et al.  Sr–Nd–Pb–He–O Isotope and Geochemical Constraints on the Genesis of Cenozoic Magmas from the West Antarctic Rift , 2009 .

[21]  S. Weaver,et al.  Geochemical Evolution of Intraplate Volcanism at Banks Peninsula, New Zealand: Interaction Between Asthenospheric and Lithospheric Melts , 2009 .

[22]  K. Sims,et al.  A Sr, Nd, Hf, and Pb isotope perspective on the genesis and long-term evolution of alkaline magmas from Erebus volcano, Antarctica. , 2008 .

[23]  N. Arndt,et al.  Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array , 2008 .

[24]  K. Panter,et al.  The Origin of HIMU in the SW Pacific: Evidence from Intraplate Volcanism in Southern New Zealand and Subantarctic Islands , 2006 .

[25]  D. Garbe‐Schönberg,et al.  Cenozoic intraplate volcanism on New Zealand: Upwelling induced by lithospheric removal , 2006 .

[26]  R. Müller,et al.  A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin , 2005 .

[27]  F. Albarède,et al.  Geochemical segmentation of the Mid‐Atlantic Ridge north of Iceland and ridge–hot spot interaction in the North Atlantic , 2005 .

[28]  B. Hanan,et al.  Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge , 2004, Nature.

[29]  J. Blichert‐Toft,et al.  Pb‐Hf‐Nd‐Sr isotope variations along the Galápagos Spreading Center (101°–83°W): Constraints on the dispersal of the Galápagos mantle plume , 2003 .

[30]  C. Langmuir,et al.  Sr‐Nd‐Pb‐Hf Isotope Results from ODP Leg 187: Evidence for Mantle Dynamics of the Australian‐Antarctic Discordance and Origin of the Indian MORB Source , 2002 .

[31]  J. Canales,et al.  Crustal thickness along the western Galápagos Spreading Center and the compensation of the Galápagos hotspot swell , 2002 .

[32]  V. Kamenetsky,et al.  Mantle-melt Evolution (Dynamic Source) in the Origin of a Single MORB Suite: a Perspective from Magnesian Glasses of Macquarie Island , 2002 .

[33]  P. Armienti,et al.  Cenozoic magmatism in the western Ross Embayment: Role of mantle plume versus plate dynamics in the development of the West Antarctic Rift System , 2002 .

[34]  M. Thirlwall Multicollector ICP-MS analysis of Pb isotopes using a 207pb-204pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization , 2002 .

[35]  J. Blichert‐Toft,et al.  Hf isotope geochemistry of the Galapagos Islands , 2001 .

[36]  I. Nicholls,et al.  Osmium Isotopic Evidence for Crust–Mantle Interaction in the Genesis of Continental Intraplate Basalts from the Newer Volcanics Province, Southeastern Australia , 2001 .

[37]  K. Panter,et al.  Geochemistry of Late Cenozoic basalts from the Crary Mountains: characterization of mantle sources in Marie Byrd Land, Antarctica , 2000 .

[38]  S. Kelley,et al.  Mantle plumes and Antarctica-New Zealand rifting: evidence from mid-Cretaceous mafic dykes , 1999, Journal of the Geological Society.

[39]  I. Vlastelic,et al.  Large-scale chemical and thermal division of the Pacific mantle , 1999, Nature.

[40]  S. O’Reilly,et al.  Location of Pacific and Indian mid-ocean ridge–type mantle in two time slices: Evidence from Pb, Sr, and Nd isotopes for Cenozoic Australian basalts , 1999 .

[41]  B. Hanan,et al.  Chaotic topography, mantle flow and mantle migration in the Australian–Antarctic discordance , 1998, Nature.

[42]  J. Blusztajn,et al.  Hobbs Coast Cenozoic volcanism: Implications for the West Antarctic rift system , 1997 .

[43]  F. Albarède,et al.  Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS , 1997 .

[44]  S. O’Reilly,et al.  MULTIPLE SOURCES FOR BASALTIC ROCKS FROM DUBBO, EASTERN AUSTRALIA : GEOCHEMICAL EVIDENCE FOR PLUME-LITHOSPHERIC MANTLE INTERACTION , 1997 .

[45]  J. Mahoney,et al.  Geochemistry and geochronology of ancient southeast Indian and southwest Pacific seafloor , 1995 .

[46]  S. O’Reilly,et al.  Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle? , 1995 .

[47]  M. Stein,et al.  Geochemical evolution of rift magmas by progressive tapping of a stratified mantle source beneath the Ross Sea Rift, Northern Victoria Land, Antarctica , 1995 .

[48]  A. Crawford,et al.  Tasmanian Tertiary basalts, the Balleny plume, and opening of the Tasman Sea (southwest Pacific Ocean) , 1993 .

[49]  B. Hanan,et al.  Nd‐Sr‐Pb isotopic variations along the Gulf of Aden: Evidence for Afar Mantle Plume‐Continental Lithosphere Interaction , 1992 .

[50]  C. Langmuir,et al.  Isotope evidence of a mantle convection boundary at the Australian-Antarctic Discordance , 1988, Nature.

[51]  B. Hamelin,et al.  Large-scale regional units in the depleted upper mantle revealed by an isotope study of the South-West Indian Ridge , 1985, Nature.

[52]  C. Langmuir,et al.  The geochemistry of oceanic basalts in the vicinity of transform faults: Observations and implications , 1984 .

[53]  S. Hart A large-scale isotope anomaly in the Southern Hemisphere mantle , 1984, Nature.

[54]  R. Evans,et al.  Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29 degrees N to 73 degrees N , 1983 .

[55]  W. White,et al.  Petrologic and geochemical variations along the Mid-Atlantic Ridge from 27?N to 73?N , 1983 .

[56]  D. Green,et al.  Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data , 1978 .

[57]  C. Langmuir,et al.  A general mixing equation with applications to Icelandic basalts , 1978 .

[58]  F. Toerien,et al.  Separation of Lead(II), from Bismuth(III), Thallium(III), Cadmium(II), Mercury(II), Gold(III), Platinum(IV), Palladium(II), and Other Elements by Anion Exchange Chromatography. , 1966 .