On the origin of chloride-induced emission enhancement in ortho substituted squaramides

[1]  J. Barroso-Flores,et al.  Sensitive water-soluble fluorescent chemosensor for chloride based on a bisquinolinium pyridine-dicarboxamide compound , 2015 .

[2]  Jong Seung Kim,et al.  Chromogenic/Fluorogenic Ensemble Chemosensing Systems. , 2015, Chemical reviews.

[3]  Philip A. Gale,et al.  High-Affinity Anion Binding by Steroidal Squaramide Receptors** , 2015, Angewandte Chemie.

[4]  Guillem Ramis,et al.  Cell uptake and localization studies of squaramide based fluorescent probes. , 2014, Bioconjugate chemistry.

[5]  K. Jolliffe,et al.  Colorimetric and luminescent sensors for chloride: hydrogen bonding vs deprotonation. , 2013, Organic letters.

[6]  V. Ramalingam,et al.  Chloride sensing via suppression of excited state intramolecular proton transfer in squaramides. , 2013, Chemical communications.

[7]  O. Miljanić,et al.  Benzobisoxazole fluorophore vicariously senses amines, ureas, anions. , 2012, Chemical communications.

[8]  Jianzhang Zhao,et al.  Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. , 2012, Physical chemistry chemical physics : PCCP.

[9]  E. Garcı́a-España,et al.  Grafted squaramide monoamine nanoparticles as simple systems for sulfate recognition in pure water. , 2012, Chemical communications.

[10]  Raghunath O. Ramabhadran,et al.  Polarized naphthalimide CH donors enhance Cl- binding within an aryl-triazole receptor. , 2011, Organic letters.

[11]  K. Jørgensen,et al.  Squaramides: bridging from molecular recognition to bifunctional organocatalysis. , 2011, Chemistry.

[12]  R. I. Storer,et al.  Squaramides: physical properties, synthesis and applications. , 2011, Chemical Society reviews.

[13]  Mark S. Taylor,et al.  Anion detection by a fluorescent poly(squaramide): self-assembly of anion-binding sites by polymer aggregation. , 2011, Angewandte Chemie.

[14]  Shin-ichi Kondo,et al.  Anion recognition by 2,2′-binaphthalene derivatives bearing urea and thiourea groups at 8- and 8′-positions by UV–vis and fluorescence spectroscopies , 2011 .

[15]  K. Schenk,et al.  Turn-off-and-on: chemosensing ensembles for sensing chloride in water by fluorescence spectroscopy. , 2010, Inorganic chemistry.

[16]  F. Wang,et al.  Anion complexation and sensing using modified urea and thiourea-based receptors. , 2010, Chemical Society reviews.

[17]  Massimo Boiocchi,et al.  The squaramide versus urea contest for anion recognition. , 2010, Chemistry.

[18]  Bradley D. Smith,et al.  Squaraine rotaxane as a reversible optical chloride sensor. , 2010, Chemistry.

[19]  V. Rawal,et al.  Chiral squaramide derivatives are excellent hydrogen bond donor catalysts. , 2008, Journal of the American Chemical Society.

[20]  Seogjoo J. Jang,et al.  Carbonyl groups as molecular valves to regulate chloride binding to squaramides. , 2008, Organic letters.

[21]  T. Gunnlaugsson,et al.  Selective fluorescent sensing of chloride , 2007 .

[22]  D. Diamond,et al.  Chloride selective calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. , 2006, Journal of the American Chemical Society.

[23]  R. Hohl,et al.  Synthesis and activity of fluorescent isoprenoid pyrophosphate analogues. , 2004, The Journal of organic chemistry.

[24]  S. Frings,et al.  Chloride Accumulation in Mammalian Olfactory Sensory Neurons , 2004, The Journal of Neuroscience.

[25]  M. G. Wood,et al.  Twisted Intramolecular Charge Transfer States in 2-Arylbenzotriazoles: Fluorescence Deactivation via Intramolecular Electron Transfer Rather Than Proton Transfer , 2002 .

[26]  F. W. Fowler,et al.  The Squaramides. A New Family of Host Molecules for Crystal Engineering , 2002 .

[27]  K. Solntsev,et al.  Excited-state proton transfer: from constrained systems to "super" photoacids to superfast proton transfer. , 2002, Accounts of chemical research.

[28]  A. Beeby,et al.  The Photophysical Properties of Menthyl Anthranilate: A UV-A Sunscreen¶ , 2000 .

[29]  O. Wolfbeis,et al.  Anion‐lnduced Fluorescence Quenching of a New Zwitterionic Biacridine Derivative , 1999 .

[30]  R. Goody,et al.  Chemo-Enzymatic Synthesis of Fluorescent Rab 7 Proteins: Tools to Study Vesicular Trafficking in Cells. , 1999, Angewandte Chemie.

[31]  L. Arnaut,et al.  Excited-state proton transfer reactions II. Intramolecular reactions , 1993 .

[32]  P. A. Thompson,et al.  Solution photophysics of 1- and 3-aminofluorenone: the role of inter- and intramolecular hydrogen bonding in radiationless deactivation , 1991 .

[33]  P. Barbara,et al.  Spectroscopic Studies of Excited-State Intramolecular Proton Transfer in 1-(Acylamino)anthraquinones , 1991 .

[34]  T. Elsaesser,et al.  Time-resolved spectroscopy on ultrafast proton transfer in 2-(2'-hydroxy-5'-methylphenyl)benzotriazole in liquid and polymer environments , 1991 .

[35]  D. W. Boykin,et al.  17O NMR spectroscopy: geometric effects on intramolecular hydrogen bonding in rigid carbonyl systems , 1990 .

[36]  M. Kasha Proton-transfer spectroscopy. Perturbation of the tautomerization potential , 1986 .

[37]  S. Schneider,et al.  The role of tautomeric and rotameric species in the photophysics of 2-(2′-hydroxyphenyl)benzoxazole , 1983 .

[38]  T. Hiratsuka New fluorescent analogs of cAMP and cGMP available as substrates for cyclic nucleotide phosphodiesterase. , 1982, The Journal of biological chemistry.