Palm fruit colours are linked to the broad-scale distribution and diversification of primate colour vision systems

A long-standing hypothesis in ecology and evolution is that trichromatic colour vision (the ability to distinguish red from green) in frugivorous primates has evolved as an adaptation to detect conspicuous (reddish) fruits. This could provide a competitive advantage over dichromatic frugivores which cannot distinguish reddish colours from a background of green foliage. Here, we test whether the origin, distribution and diversity of trichromatic primates is positively associated with the availability of conspicuous palm fruits, i.e. keystone fruit resources for tropical frugivores. We combine global data of colour vision, distribution and phylogenetic data for more than 400 primate species with fruit colour data for more than 1700 palm species, and reveal that species richness of trichromatic primates increases with the proportion of palm species that have conspicuous fruits, especially in subtropical African forests. By contrast, species richness of trichromats in Asia and the Americas is not positively associated with conspicuous palm fruit colours. Macroevolutionary analyses further indicate rapid and synchronous radiations of trichromats and conspicuous palms on the African mainland starting 10 Ma. These results suggest that the distribution and diversification of African trichromatic primates is strongly linked to the relative availability of conspicuous (versus non-conspicuous) palm fruits, and that interactions between primates and palms are related to the coevolutionary dynamics of primate colour vision systems and palm fruit colours.

[1]  Jens-Christian Svenning,et al.  PalmTraits 1.0, a species-level functional trait database of palms worldwide , 2019, Scientific Data.

[2]  anonymous,et al.  Global review , 2019 .

[3]  Víctor Arroyo-Rodríguez,et al.  Ecological traits of the world’s primates , 2019, Scientific Data.

[4]  H. Morlon,et al.  Which frugivory‐related traits facilitated historical long‐distance dispersal in the custard apple family (Annonaceae)? , 2019, Journal of Biogeography.

[5]  S. Little,et al.  Estimating divergence times and ancestral breeding systems in Ficus and Moraceae , 2018, Annals of botany.

[6]  P. Legendre Numerical Ecology , 2019, Encyclopedia of Ecology.

[7]  M. Donoghue,et al.  Global geographic patterns in the colours and sizes of animal‐dispersed fruits , 2018, Global Ecology and Biogeography.

[8]  C. Chapman,et al.  Frugivores and the evolution of fruit colour , 2018, Biology Letters.

[9]  David W. S. Wong,et al.  Comparing implementations of global and local indicators of spatial association , 2018, TEST.

[10]  Shai Meiri,et al.  An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation , 2018 .

[11]  C. Chapman,et al.  Primate Fruit Color: Useful Concept or Alluring Myth? , 2018, International Journal of Primatology.

[12]  N. Stenseth,et al.  Dietary flexibility of Bale monkeys (Chlorocebus djamdjamensis) in southern Ethiopia: effects of habitat degradation and life in fragments , 2018, BMC Ecology.

[13]  W. D. Kissling,et al.  Frugivory-related traits promote speciation of tropical palms , 2017, Nature Ecology & Evolution.

[14]  Kenneth L. Chiou,et al.  Trichromacy increases fruit intake rates of wild capuchins (Cebus capucinus imitator) , 2017, Proceedings of the National Academy of Sciences.

[15]  J. Svenning,et al.  An all-evidence species-level supertree for the palms (Arecaceae). , 2016, Molecular phylogenetics and evolution.

[16]  A. Martínez-Aquino Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees , 2016, Current zoology.

[17]  E. Heymann,et al.  Ranging, activity budget, and diet composition of red titi monkeys (Callicebus cupreus) in primary forest and forest edge , 2015, Primates.

[18]  J. Svenning,et al.  A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. , 2015, Molecular phylogenetics and evolution.

[19]  Ranging Behavior and Resource Use by Lion-Tailed Macaques (Macaca silenus) in Selectively Logged Forests , 2015, International Journal of Primatology.

[20]  S. Gouveia,et al.  Forest structure drives global diversity of primates. , 2014, The Journal of animal ecology.

[21]  R. Maia,et al.  The adaptive value of primate color vision for predator detection , 2014, American journal of primatology.

[22]  W. Jetz,et al.  EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals , 2014 .

[23]  Brody Sandel,et al.  Establishing macroecological trait datasets: digitalization, extrapolation, and validation of diet preferences in terrestrial mammals worldwide , 2014, Ecology and evolution.

[24]  P. Jordano,et al.  Birds see the true colours of fruits to live off the fat of the land , 2014, Proceedings of the Royal Society B: Biological Sciences.

[25]  J. Lambert Handbook of the Mammals of the World: 3. Primates , 2014 .

[26]  J. Creech Internet Reviews: IUCN Red List of Threatened Species , 2014 .

[27]  H. Balslev,et al.  Multimillion-year climatic effects on palm species diversity in Africa. , 2013, Ecology.

[28]  W. John Kress,et al.  The Ornaments of Life: Coevolution and Conservation in the Tropics , 2013 .

[29]  P. Raven,et al.  Rethinking Primate Origins Again , 2013, American journal of primatology.

[30]  R. FitzJohn Diversitree: comparative phylogenetic analyses of diversification in R , 2012 .

[31]  James B. Grace,et al.  Guidelines for a graph-theoretic implementation of structural equation modeling , 2012, Ecosphere.

[32]  J. Fjeldså,et al.  The partitioning of Africa: statistically defined biogeographical regions in sub‐Saharan Africa , 2012 .

[33]  Miguel Verdú,et al.  Mutualism with plants drives primate diversification. , 2012, Systematic biology.

[34]  Yves Rosseel,et al.  lavaan: An R Package for Structural Equation Modeling , 2012 .

[35]  Liam J. Revell,et al.  phytools: an R package for phylogenetic comparative biology (and other things) , 2012 .

[36]  W. Kress,et al.  A brief history of fruits and frugivores , 2011 .

[37]  R. Morley Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests , 2011 .

[38]  J. Losos,et al.  ECOLOGICAL OPPORTUNITY AND THE RATE OF MORPHOLOGICAL EVOLUTION IN THE DIVERSIFICATION OF GREATER ANTILLEAN ANOLES , 2010, Evolution; international journal of organic evolution.

[39]  Amy L. Schreier Feeding Ecology, Food Availability and Ranging Patterns of Wild Hamadryas Baboons at Filoha , 2010, Folia Primatologica.

[40]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[41]  R. Bonnefille,et al.  Cenozoic vegetation, climate changes and hominid evolution in tropical Africa , 2010 .

[42]  R. Kay,et al.  New perspectives on anthropoid origins , 2010, Proceedings of the National Academy of Sciences.

[43]  Vicki K Bentley-Condit Food choices and habitat use by the Tana River yellow baboons (Papio cynocephalus): a preliminary report on five years of data , 2009, American journal of primatology.

[44]  W. Jetz,et al.  The global distribution of frugivory in birds , 2009 .

[45]  Amy L. Schreier,et al.  Composition and Seasonality of Diet in Wild Hamadryas Baboons: Preliminary Findings from Filoha , 2008, Folia Primatologica.

[46]  Richard Field,et al.  Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? , 2008 .

[47]  W. D. Kissling,et al.  Spatial autocorrelation and the selection of simultaneous autoregressive models , 2007 .

[48]  Carsten Rahbek,et al.  Food plant diversity as broad-scale determinant of avian frugivore richness , 2007, Proceedings of the Royal Society B: Biological Sciences.

[49]  J. Dransfield,et al.  The fossil history of palms (Arecaceae) in Africa and new records from the Late Oligocene (28–27 Mya) of north-western Ethiopia , 2006 .

[50]  R. Govaerts,et al.  World Checklist of Palms , 2005 .

[51]  C. Chapman,et al.  Primate Seed Dispersal Linking Behavioral Ecology with Forest Community Structure , 2005 .

[52]  M. Vorobyev,et al.  Detection of Fruit and the Selection of Primate Visual Pigments for Color Vision , 2004, The American Naturalist.

[53]  K. Böhning‐Gaese,et al.  A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages , 2004, Oecologia.

[54]  T. Defler,et al.  Diet of a Group of Callicebus torquatus lugens (Humboldt, 1812) During the Annual Resource Bottleneck in Amazonian Colombia , 1997, International Journal of Primatology.

[55]  M. Weigend World Geographical Scheme for Recording Plant Distributions, 2nd , 2009 .

[56]  Jonathan P. Bollback,et al.  Stochastic mapping of morphological characters. , 2003, Systematic biology.

[57]  Nathaniel J Dominy,et al.  Historical contingency in the evolution of primate color vision. , 2003, Journal of human evolution.

[58]  C. Herrera Seed dispersal by vertebrates , 2002 .

[59]  M. Shanahan,et al.  Fig‐eating by vertebrate frugivores: a global review , 2001, Biological reviews of the Cambridge Philosophical Society.

[60]  R. Pakeman Seeds: The Ecology of Regeneration in Plant Communities, 2nd edn , 2001 .

[61]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  P. Jordano Fruits and Frugivory , 2000 .

[63]  G. Wahungu Diet and habitat overlap in two sympatric primate species, the Tana crested mangabey Cercocebus galeritus and yellow baboon Papio cynocephalus , 1998 .

[64]  C. Tutin,et al.  The primate community of the Lopé reserve, Gabon: Diets, responses to fruit scarcity, and effects on biomass , 1997, American journal of primatology.

[65]  J. Fleagle,et al.  Geographic and climatic control of primate diversity. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[66]  K. Milton,et al.  Diet and primate evolution. , 1993, Scientific American.

[67]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[68]  R. Brummitt,et al.  World geographical scheme for recording plant distributions , 1992 .

[69]  A. Henderson,et al.  A review of animal-mediated seed dispersal of palms. , 1989 .

[70]  Katherine Homewood,et al.  FEEDING STRATEGY OF TANA MANGABEY (CERCOCEBUS-GALERITUS-GALERITUS)(MAMMALIA-PRIMATES) , 2009 .

[71]  M. May,et al.  Body weight, diet and home range area in primates , 1976, Nature.

[72]  P. Moore Seed dispersal , 1975, Nature.

[73]  M. Cartmill Rethinking primate origins. , 1974, Science.

[74]  A. Wallace The Colour Sense: its Origin and Development An Essay in Comparative Psychology , 1879, Nature.