Low pressure organic vapor phase deposition of small molecular weight organic light emitting device structures

A new technique for the deposition of amorphous organic thin films, low pressure organic vapor phase deposition (LP-OVPD), was used to fabricate organic light emitting devices (OLEDs) consisting of a film of aluminum tris-(8 hydroxyquinoline) (Alq3) grown on the surface of a film of N′-diphenyl-N,N′-bis(3-methylphenyl)1-1′biphenyl-4-4′diamine. The resulting heterojunction OLED was found to have a performance similar to conventional, small molecular weight OLEDs grown using thermal evaporation in vacuum. The LP-OVPD grown device has an external quantum efficiency of 0.40±0.05% and a turn-on voltage of approximately 6 V. The rapid throughput demonstrated with LP-OVPD has the potential to facilitate low cost mass production of conventional small molecule based OLEDs, and its use of low vacuum in a horizontal reactor lends itself to roll-to-roll deposition of organic films for many photonic device applications.