Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates

Abstract

[1]  Xiaoying Shi,et al.  Extremely low oxygen concentration in mid-Proterozoic shallow seawaters , 2016 .

[2]  B. Peucker‐Ehrenbrink,et al.  Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration , 2016 .

[3]  S. Crowe,et al.  Oxidative elemental cycling under the low O2 Eoarchean atmosphere , 2016, Scientific Reports.

[4]  D. Canfield,et al.  Sufficient oxygen for animal respiration 1,400 million years ago , 2016, Proceedings of the National Academy of Sciences.

[5]  R. Frei,et al.  Chromium‐isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic , 2016, Geobiology.

[6]  Linda C. Kah,et al.  Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates , 2016 .

[7]  L. Fernández-Díaz,et al.  Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate: Implications for their use as paleoclimatic proxy , 2015 .

[8]  C. Holmden,et al.  Global variability of chromium isotopes in seawater demonstrated by Pacific, Atlantic, and Arctic Ocean samples , 2015 .

[9]  Linda C. Kah,et al.  Heterogeneous redox conditions and a shallow chemocline in the Mesoproterozoic ocean: Evidence from carbon–sulfur–iron relationships , 2015 .

[10]  C. Korte,et al.  Diagenetic alteration in low-Mg calcite from macrofossils: a review , 2015 .

[11]  J. Parnell,et al.  Enhanced organic carbon burial in large Proterozoic lakes: Implications for atmospheric oxygenation , 2014 .

[12]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[13]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[14]  D. Canfield,et al.  Oxygen requirements of the earliest animals , 2014, Proceedings of the National Academy of Sciences.

[15]  D. Connelly,et al.  The chromium isotopic composition of seawater and marine carbonates , 2013 .

[16]  A. J. Kaufman,et al.  Re–Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil , 2013 .

[17]  Linda C. Kah,et al.  Oceanic molybdenum drawdown by epeiric sea expansion in the Mesoproterozoic , 2013 .

[18]  D. Canfield,et al.  Atmospheric oxygenation three billion years ago , 2013, Nature.

[19]  A. Knoll,et al.  Oxygen, ecology, and the Cambrian radiation of animals , 2013, Proceedings of the National Academy of Sciences.

[20]  Linda C. Kah,et al.  Carbon isotope records in a Mesoproterozoic epicratonic sea: Carbon cycling in a low-oxygen world , 2013 .

[21]  A. Knoll,et al.  A basin redox transect at the dawn of animal life , 2012 .

[22]  B. Kamber,et al.  Arctic Bay Formation, Borden Basin, Nunavut (Canada): Basin evolution, black shale, and dissolved metal systematics in the Mesoproterozoic ocean , 2012 .

[23]  Linda C. Kah,et al.  Chemostratigraphy of the Late Mesoproterozoic Atar Group, Taoudeni Basin, Mauritania: Muted isotopic variability, facies correlation, and global isotopic trends , 2012 .

[24]  G. Shields-Zhou,et al.  The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling , 2012 .

[25]  R. Frei,et al.  Chromium isotopes in carbonates — A tracer for climate change and for reconstructing the redox state of ancient seawater , 2011 .

[26]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[27]  S. Stipp,et al.  Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments , 2011 .

[28]  Linda C. Kah,et al.  Protracted oxygenation of the Proterozoic biosphere , 2011 .

[29]  A. Boyce,et al.  Early oxygenation of the terrestrial environment during the Mesoproterozoic , 2010, Nature.

[30]  P. Renne,et al.  Re–Os geochronology of a Mesoproterozoic sedimentary succession, Taoudeni basin, Mauritania: Implications for basin-wide correlations and Re–Os organic-rich sediments systematics , 2010 .

[31]  D. Canfield,et al.  Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes , 2009, Nature.

[32]  K. Azmy,et al.  Oceanic redox conditions in the Late Mesoproterozoic recorded in the upper Vazante Group carbonates of São Francisco Basin, Brazil: Evidence from stable isotopes and REEs , 2009 .

[33]  N. Butterfield,et al.  Oxygen, animals and oceanic ventilation: an alternative view , 2009, Geobiology.

[34]  B. Kendall,et al.  Global correlation of the Vazante Group, São Francisco Basin, Brazil: Re-Os and U-Pb radiometric age constraints , 2008 .

[35]  F. Blanckenburg,et al.  The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS , 2008 .

[36]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[37]  Scott Fendorf,et al.  Genesis of hexavalent chromium from natural sources in soil and groundwater , 2007, Proceedings of the National Academy of Sciences.

[38]  J. Bartley,et al.  Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia): Signal recovery in a fold-and-thrust belt , 2007 .

[39]  Linda C. Kah,et al.  Active Microbial Sulfur Disproportionation in the Mesoproterozoic , 2005, Science.

[40]  A. J. Kaufman,et al.  Biomarker Evidence for Photosynthesis During Neoproterozoic Glaciation , 2005, Science.

[41]  G. Narbonne THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems , 2005 .

[42]  V. Gallardo,et al.  Macrobenthic animal assemblages of the continental margin off Chile (22° to 42°S) , 2005, Journal of the Marine Biological Association of the United Kingdom.

[43]  T. Lyons,et al.  Changes in organic matter production and accumulation as a mechanism for isotopic evolution in the Mesoproterozoic ocean , 2003, Geological Magazine.

[44]  L. Levin Oxygen minimum zone Benthos: Adaptation and community response to hypoxia , 2003 .

[45]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[46]  J. Veizer,et al.  Dolomitization and isotope stratigraphy of the Vazante Formation, São Francisco Basin, Brazil , 2001 .

[47]  Linda C. Kah,et al.  Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution , 2001 .

[48]  A. J. Kaufman,et al.  Global Events Across the Mesoproterozoic-Neoproterozoic Boundary: C and Sr Isotopic Evidence from Siberia , 2001 .

[49]  V. N. Sergeev PALEOBIOLOGY OF THE NEOPROTEROZOIC (UPPER RIPHEAN) SHORIKHA AND BUROVAYA SILICIFIED MICROBIOTAS, TURUKHANSK UPLIFT, SIBERIA , 2001 .

[50]  M. Deynoux,et al.  Facies analysis and sequence stratigraphy of neoproterozoic Platform deposits in Adrar of Mauritania, Taoudeni basin, West Africa , 1998 .

[51]  R. Reid,et al.  Carbonate Recrystallization in Shallow Marine Environments: A Widespread Diagenetic Process Forming Micritized Grains , 1998 .

[52]  A. Knoll,et al.  Paleobiology of the Mesoproterozoic-Neoproterozoic transition: the Sukhaya Tunguska Formation, Turukhansk Uplift, Siberia. , 1997, Precambrian research.

[53]  C. Nicholas The Sr isotopic evolution of the oceans during the 'Cambrian Explosion' , 1996, Journal of the Geological Society.

[54]  I. Gorokhov,et al.  U-Pb systematics of pre-Cambrian carbonates: The Riphean Sukhaya Tunguska Formation in the Turukhansk Uplift, Siberia , 1995 .

[55]  A. J. Kaufman,et al.  The carbon-isotopic composition of Proterozoic carbonates: Riphean successions from northwestern Siberia (Anabar Massif, Turukhansk Uplift). , 1995, American journal of science.

[56]  A. J. Kaufman,et al.  Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. , 1995, Precambrian research.

[57]  A. Townshend Metals and their Compounds in the Environment. Occurrence, Analysis and Biological Relevance , 1993 .

[58]  S. Mazzullo Geochemical and neomorphic alteration of dolomite: A review , 1992, Carbonates and Evaporites.

[59]  R. Rainbird,et al.  Nature and timing of Franklin igneous events, Canada: Implications for a Late Proterozoic mantle plume and the break-up of Laurentia , 1992 .

[60]  E. Merian,et al.  Metals and their compounds in the environment: Occurrence, analysis, and biological relevance , 1991 .

[61]  J. Banner,et al.  Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis , 1990 .

[62]  P. Swart,et al.  New distribution coefficient for the incorporation of strontium into dolomite and its implications for the formation of ancient dolomites , 1990 .

[63]  A. Moussine-Pouchkine,et al.  Is cratonic sedimentation consistent with available models? An example from the Upper Proterozoic of the West African craton , 1988 .

[64]  S. Dorobek Petrography, Geochemistry, and Origin of Burial Diagenetic Facies, Siluro-Devonian Helderberg Group (Carbonate Rocks), Central Appalachians , 1987 .

[65]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[66]  M. Tucker Diagenesis, Geochemistry, and Origin of a Precambrian Dolomite: the Beck Spring Dolomite of Eastern California , 1983 .

[67]  M. Longman Carbonate Diagenetic Textures from Nearsurface Diagenetic Environments , 1980 .