The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors

Abstract This paper describes the latest improvements applied to the Goddard profiling algorithm (GPROF), particularly as they apply to the Tropical Rainfall Measuring Mission (TRMM). Most of these improvements, however, are conceptual in nature and apply equally to other passive microwave sensors. The improvements were motivated by a notable overestimation of precipitation in the intertropical convergence zone. This problem was traced back to the algorithm's poor separation between convective and stratiform precipitation coupled with a poor separation between stratiform and transition regions in the a priori cloud model database. In addition to now using an improved convective–stratiform classification scheme, the new algorithm also makes use of emission and scattering indices instead of individual brightness temperatures. Brightness temperature indices have the advantage of being monotonic functions of rainfall. This, in turn, has allowed the algorithm to better define the uncertainties needed by the sc...

[1]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[2]  E. Mueller,et al.  RAINDROP DISTRIBUTIONS AT MAJURO ATOLL, MARSHALL ISLANDS. , 1967 .

[3]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[4]  Thomas Wilheit,et al.  A Model for the Microwave Emissivity of the Ocean's Surface as a Function of Wind Speed , 1979, IEEE Transactions on Geoscience Electronics.

[5]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[6]  D. Churchill,et al.  Development and Structure of Winter Monsoon Cloud Clusters On 10 December 1978 , 1984 .

[7]  Bruce T. Draine,et al.  The discrete-dipole approximation and its application to interstellar graphite grains , 1988 .

[8]  H. Michael Goodman,et al.  Precipitation retrieval over land and ocean with the SSM/I - Identification and characteristics of the scattering signal , 1989 .

[9]  S. C. Hill,et al.  Light Scattering by Particles: Computational Methods , 1990 .

[10]  N. Grody Classification of snow cover and precipitation using the special sensor microwave imager , 1991 .

[11]  R. Daley Atmospheric Data Analysis , 1991 .

[12]  Alfred T. C. Chang,et al.  Retrieval of Monthly Rainfall Indices from Microwave Radiometric Measurements Using Probability Distribution Functions , 1991 .

[13]  G. Tripoli An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone , 1992 .

[14]  G. Tripoli A Nonhydrostatic Mesoscale Model Designed to Simulate Scale Interaction , 1992 .

[15]  Christian Kummerow,et al.  A technique for enhancing and matching the resolution of microwave measurements from the SSM/I instrument , 1992, IEEE Trans. Geosci. Remote. Sens..

[16]  Eric A. Smith,et al.  Spatial resolution enhancement of terrestrial features using deconvolved SSM/I microwave brightness temperatures , 1992, IEEE Trans. Geosci. Remote. Sens..

[17]  Hans J. Liebe,et al.  Propagation Modeling of Moist Air and Suspended Water/Ice Particles at Frequencies Below 1000 GHz , 1993 .

[18]  Christian D. Kummerow,et al.  On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies , 1993 .

[19]  Oceanic monthly rainfall derived from SSM/I , 1993 .

[20]  Joanne Simpson,et al.  Goddard Cumulus Ensemble Model. Part I: Model Description , 1993 .

[21]  G. Heymsfield,et al.  Passive Microwave Structure of Severe Tornadic Storms on 16 November 1987 , 1994 .

[22]  C. Kummerow,et al.  Microwave radiative transfer through horizontally inhomogeneous precipitating clouds , 1994 .

[23]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[24]  G. Huffman,et al.  Global tropical rain estimates from microwave‐adjusted geosynchronous IR data , 1994 .

[25]  Grant W. Petty,et al.  Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices , 1994 .

[26]  G. Heymsfield,et al.  Passive microwave and infrared structure of mesoscale convective systems , 1994 .

[27]  M. Shafer,et al.  The Pacific Rain Gage Rainfall Database , 1995 .

[28]  Matthias Steiner,et al.  Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data , 1995 .

[29]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[30]  Ralph Ferraro,et al.  The Development of SSM/I Rain-Rate Retrieval Algorithms Using Ground-Based Radar Measurements , 1995 .

[31]  Christian Kummerow,et al.  A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , 1996, IEEE Trans. Geosci. Remote. Sens..

[32]  U. Schneider,et al.  Comparison of raingauge analyses, satellite-based precipitation estimates and forecast model results , 1996 .

[33]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[34]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[35]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[36]  G. Huffman,et al.  A Screening Methodology for Passive Microwave Precipitation Retrieval Algorithms , 1998 .

[37]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[38]  Dong-Jun Seo,et al.  The WSR-88D rainfall algorithm , 1998 .

[39]  F. Marzano,et al.  Use of cloud model microphysics for passive microwave-based precipitation retrieval : Significance of consistency between model and measurement manifolds , 1998 .

[40]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[41]  Christopher Timothy Bellows Consistency testing of models used to infer rainfall from TRMM passive microwave observations , 1999 .

[42]  Eric A. Smith,et al.  Moisture Budget Analysis of TOGA COARE Area Using SSM/I-Retrieved Latent Heating and Large-Scale Q2 Estimates , 1999 .

[43]  Peter Bauer,et al.  The Effect of the Melting Layer on the Microwave Emission of Clouds over the Ocean , 1999 .

[44]  Ye Hong,et al.  Separation of Convective and Stratiform Precipitation Using Microwave Brightness Temperature , 1999 .

[45]  Alfred T. C. Chang,et al.  First results of the TRMM Microwave Imager (TMI) monthly oceanic rain rate: comparison with SSM/I , 1999 .

[46]  Ye Hong,et al.  Atmospheric Latent Heating Distributions in the Tropics Derived from Satellite Passive Microwave Radiometer Measurements , 1999 .

[47]  C. Kummerow,et al.  Combined Use of the Radar and Radiometer of TRMM to Estimate the Influence of Drop Size Distribution on Rain Retrievals , 2000 .

[48]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[49]  David T. Bolvin,et al.  Tropical Rainfall Distributions Determined Using TRMM Combined with Other Satellite and Rain Gauge Information , 2000 .

[50]  J. L. Haferman,et al.  Microwave Scattering by Precipitation , 2000 .

[51]  E. Smith,et al.  Vertical structure and transient behavior of convective-stratiform heating in TOGA COARE from combined satellite-sounding analysis , 2000 .

[52]  Ye Hong,et al.  A Texture-Polarization Method for Estimating Convective–Stratiform Precipitation Area Coverage from Passive Microwave Radiometer Data , 2001 .

[53]  W. Vargas,et al.  Light Scattering from Particles , 2002 .

[54]  C.,et al.  Analysis methods for numerical weather prediction , 2022 .