Ordinary differential equation algorithms for a frequency-domain water wave Green’s function

Our study investigated an algorithm for a second-order ordinary differential equation for the frequency-domain Green’s function of free-surface waves in water of infinite depth. A power-series method is introduced if the wave frequency $$\omega <1$$ω<1; otherwise, if $$\omega \ge 1$$ω≥1, then the trigonometrically fitted block Numerov-type method (TBNM) is employed. The calculation precision of the power-series method and the TBNM reached $$10^{-7}$$10-7 and $$10^{-6}$$10-6, respectively. The two methods have a high calculation efficiency compared with calculating the Green’s function using the series expansion representation approach. The calculation speed for these two methods is 15 times faster using the same computing codes.

[1]  A. H. Clément,et al.  An ordinary differential equation for the Green function of time-domain free-surface hydrodynamics , 1998 .

[2]  F Noblesse,et al.  NUMERICAL EVALUATION OF THE GREEN FUNCTION OF WATER-WAVE RADIATION AND DIFFRACTION , 1986 .

[4]  J. N. Newman Algorithms for the free-surface Green function , 1985 .

[5]  W. D. Kim On the harmonic oscillations of a rigid body on a free surface , 1965, Journal of Fluid Mechanics.

[6]  H. Barlow Surface Waves , 1958, Proceedings of the IRE.

[7]  M. M. Chawla,et al.  Numerov made explicit has better stability , 1984 .

[8]  Yonglei Fang,et al.  New explicit adapted Numerov methods for second-order oscillatory differential equations , 2013, Appl. Math. Comput..

[9]  M. Peter,et al.  The eigenfunction expansion of the infinite depth free surface Green function in three dimensions , 2004 .

[10]  Francis Noblesse,et al.  The Green function in the theory of radiation and diffraction of regular water waves by a body , 1982 .

[11]  J. N. Newman An expansion of the oscillatory source potential , 1984 .

[12]  Hans Van de Vyver,et al.  An explicit Numerov-type method for second-order differential equations with oscillating solutions , 2007, Comput. Math. Appl..

[13]  J. N. Newman Double-Precision Evaluation of the Oscillatory Source Potential , 1984 .

[14]  Laura Battaglia,et al.  A semi-analytical computation of the Kelvin kernel for potential flows with a free surface , 2010 .

[15]  B. R. Johnson The renormalized Numerov method applied to calculating bound states of the coupled‐channel Schroedinger equation , 1978 .

[16]  B. R. Johnson New numerical methods applied to solving the one‐dimensional eigenvalue problem , 1977 .

[17]  Xinyuan Wu,et al.  Trigonometrically fitted explicit Numerov-type method for periodic IVPs with two frequencies , 2008, Comput. Phys. Commun..

[18]  Thomas Henry Havelock,et al.  Waves due to a floating sphere making periodic heaving oscillations , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  Samuel N. Jator,et al.  Trigonometrically fitted block Numerov type method for y′′ = f(x, y, y′) , 2012, Numerical Algorithms.

[20]  Alain Clément A second order Ordinary Differential Equation for the frequency domain Green function , 2013 .

[21]  Francis Noblesse,et al.  Numerical evaluation of free-surface green functions , 1994 .

[22]  Shi-Ping Wang,et al.  The research on the highly efficient calculation method of 3-D frequency-domain Green function , 2009 .