A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon

A model for the plasma enhanced chemical vapor deposition of amorphous hydrogenated silicon (a‐Si:H) in rf and dc discharges is presented. The model deals primarily with the plasma chemistry of discharges sustained in gas mixtures containing silane (SiH4). The plasma chemistry model uses as input the electron impact rate coefficients generated in a separate simulation for the electron kinetics and therefore makes no a priori assumptions as to the manner of power deposition. Radical densities and contributions to film growth are discussed as a function of gas mixture, electrode separation, and locale of power deposition, and comparisons are made to experiment. A compendium of reactions and rate constants for silane neutral and ion chemistry is also presented.

[1]  D. Rapp,et al.  Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization , 1965 .

[2]  R. C. Ross,et al.  Plasma polymerization and deposition of amorphous hydrogenated silicon from rf and dc silane plasmas , 1984 .

[3]  K. Wasa,et al.  Effects of discharge parameters on deposition rate of hydrogenated amorphous silicon for solar cells from pure SiH4 plasma , 1987 .

[4]  Alfred P. Wolf,et al.  Rates of reaction of hydrogen atoms with silane and germane , 1975 .

[5]  R. Walsh,et al.  Relative rate studies for silylene , 1986 .

[6]  H. A. Weakliem,et al.  Ion–molecule reactions in a direct current silane glow discharge , 1987 .

[7]  W. Huntress,et al.  Ion‐molecule reactions and vibrational deactivation of H2+ ions in mixtures of hydrogen and helium , 1974 .

[8]  L. Kline Performance Predictions for Electron-Beam Controlled On/Off Switches , 1982, IEEE Transactions on Plasma Science.

[9]  Makoto Suzuki,et al.  Reactions of SiH2(X̄1A1) with H2, CH4, C2H4, SiH4 and Si2H6 at 298 K , 1985 .

[10]  J. Knights,et al.  Microstructure of plasma‐deposited a‐Si : H films , 1979 .

[11]  F. Fehsenfeld,et al.  Temperature Dependences of the Rate Coefficients for the Reactions of Ar+ with O2, H2, and D2 , 1970 .

[12]  I. Haller Ionic species in a silane plasma , 1980 .

[13]  Mark J. Kushner,et al.  Monte‐Carlo simulation of electron properties in rf parallel plate capacitively coupled discharges , 1983 .

[14]  P. A. Thompson,et al.  Compressible Fluid Dynamics , 1972 .

[15]  J. Perrin,et al.  Dissociation cross sections of silane and disilane by electron impact , 1982 .

[16]  R. Street,et al.  Luminescence studies of plasma-deposited hydrogenated silicon , 1978 .

[17]  R. Robertson,et al.  Total and partial electron collisional ionization cross sections for CH4, C2H6, SiH4, and Si2H6 , 1984 .

[18]  M. Golde,et al.  Product distributions in the reactions of excited noble‐gas atoms with hydrogen‐containing compounds , 1983 .

[19]  T. L. Cottrell,et al.  Transition probability in molecular encounters. Part 5.—Vibrational-rotational energy transfer , 1962 .

[20]  K. Tachibana,et al.  Diagnostics and modelling of a methane plasma used in the chemical vapour deposition of amorphous carbon films , 1984 .

[21]  Mark J. Kushner,et al.  On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a‐Si:H , 1987 .

[22]  P. Gaspar,et al.  Endothermic ion‐molecule reactions in silane , 1973 .

[23]  R. Robertson,et al.  Reactions of He+, Ne+, and Ar+ with CH4, C2H6, SiH4, and Si2H6 , 1983 .

[24]  J. D. Kinney,et al.  Absolute Cross Sections of Lithium and Other Alkali Metal Atoms for Ionization by Electrons , 1965 .

[25]  M. Bowers,et al.  Thermal energy charge transfer reactions of rare-gas ions to methane, ethane, propane, and silane - The importance of Franck-Condon factors. , 1972 .

[26]  D. Adler,et al.  Materials issues in amorphous semiconductor technology , 1986 .

[27]  Robert J. Kee,et al.  A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor , 1984 .

[28]  A. P. Hickman Approximate scaling formula for ion–ion mutual neutralization rates , 1979 .

[29]  George Bekefi,et al.  Principles of laser plasmas , 1976 .

[30]  S. Corrigan Dissociation of Molecular Hydrogen by Electron Impact , 1965 .

[31]  G. Turban,et al.  Reaction mechanisms of the radio frequency glow discharged deposition process in silane-helium , 1979 .

[32]  I. Haller Importance of chain reactions in the plasma deposition of hydrogenated amorphous silicon , 1983 .

[33]  J. Yardley,et al.  Vibrational Deactivation in Methane Mixtures , 1970 .

[34]  J. Velazco,et al.  Rate constants and quenching mechanisms for the metastable states of argon, krypton, and xenon , 1978 .

[35]  E. Eggarter Comprehensive optical and collision data for radiation action. II. Ar , 1975 .

[36]  F. W. Lampe,et al.  Ion–molecule reactions in SiH4–D2 mixtures , 1977 .

[37]  L. G. Piper,et al.  Quenching cross sections for electronic energy transfer reactions between metastable argon atoms and noble gases and small molecules , 1973 .

[38]  F. Kampas,et al.  A study of hydrogenated amorphous silicon deposited by rf glow discharge in silane‐hydrogen mixtures , 1984 .

[39]  J. R. Peterson,et al.  H + + H − Mutual Neutralization Cross Section Obtained with Superimposed Beams , 1970 .

[40]  T. Robinson,et al.  Particle Distributions and Laser-Particle Interactions in an RF Discharge of Silane , 1986, IEEE Transactions on Plasma Science.

[41]  P. John,et al.  Arrhenius parameters for silene insertion reactions , 1973 .

[42]  H. Drawin Zur formelmäßigen Darstellung der Ionisierungsquerschnitte gegenüber Elektronenstoß , 1961 .

[43]  F. W. Lampe,et al.  Electron impact study of ionization and dissociation of monosilane and disilane , 1969 .

[44]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[45]  P. A. Longeway,et al.  Decomposition kinetics of a static direct current silane glow discharge , 1984 .

[46]  H. Tagashira,et al.  Measurement of the ionisation and attachment coefficients in monosilane and disilane , 1986 .

[47]  O. Strausz,et al.  Photochemistry of silicon compounds. IV. Mercury photosensitization of disilane , 1973 .

[48]  M. Ueda,et al.  High‐rate deposition of amorphous hydrogenated silicon from a SiH4 plasma , 1984 .

[49]  A. Roche,et al.  Determination of Proton Affinity from the Kinetics of Proton Transfer Reactions. I. Relative Proton Affinities , 1971 .

[50]  F. Kampas Gas‐phase free radical reactions in the glow‐discharge deposition of hydrogenated amorphous silicon from silane and disilane , 1985 .

[51]  A. Gallagher,et al.  Ion chemistry in silane dc discharges , 1985 .

[52]  J. Jacob,et al.  Total electron impact excitation cross sections of Ar and Kr , 1976 .

[53]  J. Perrin,et al.  Production mechanism and reactivity of the SiH radical in a silane plasma , 1984 .

[54]  P. Potzinger,et al.  Zur Reaktion von Silylradikalen Das Verhältnis Disproportionierung/Rekombination , 1977 .

[55]  L. Vriens CALCULATION OF ABSOLUTE IONISATION CROSS SECTIONS OF He, He*, He +, Ne, Ne*, Ne +, Ar, Ar*, Hg and Hg* , 1964 .

[56]  J. Lucas,et al.  Electron swarm parameters in argon and krypton , 1981 .

[57]  G. Wong,et al.  Spatial concentrations of silicon atoms by laser‐induced fluorescence in a silane glow discharge , 1984 .

[58]  W. Bailey,et al.  Electron kinetics of silane discharges , 1983 .

[59]  M. Kushner A phenomenological model for surface deposition kinetics during plasma and sputter deposition of amorphous hydrogenated silicon , 1987 .

[60]  Robert J. Kee,et al.  A Mathematical Model of Silicon Chemical Vapor Deposition Further Refinements and the Effects of Thermal Diffusion , 1986 .

[61]  Inan Chen,et al.  Mass transfer analyses of the plasma deposition process , 1983 .

[62]  F. W. Lampe,et al.  Ion-molecule reactions in disilane , 1974 .

[63]  P. Gaspar,et al.  Ion‐Molecule Reactions in Silane , 1972 .

[64]  C. Moore Vibration—Rotation Energy Transfer , 1965 .

[65]  V. Kempter,et al.  Ionic reactions in monosilane. Radiation chemistry implications , 1972 .