Acceleration Techniques for Approximating the Matrix Exponential Operator
暂无分享,去创建一个
[1] I. Moret,et al. An interpolatory approximation of the matrix exponential based on Faber polynomials , 2001 .
[2] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[3] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[4] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[5] N. Higham. The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..
[6] Yousef Saad,et al. Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..
[7] Igor Moret,et al. Interpolating functions of matrices on zeros of quasi‐kernel polynomials , 2005, Numer. Linear Algebra Appl..
[8] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[9] R. Varga,et al. Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .
[10] R. Freund,et al. Software for simplified Lanczos and QMR algorithms , 1995 .
[11] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[12] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[13] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[14] D. Bertaccini,et al. REAL-VALUED ITERATIVE ALGORITHMS FOR COMPLEX SYMMETRIC LINEAR SYSTEMS∗ , 2007 .
[15] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[16] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[17] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[18] Marco Vianello,et al. Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..
[19] Arieh Iserles. How Large is the Exponential of a Banded Matrix , 1999 .
[20] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[21] Valeria Simoncini,et al. Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..
[22] Owe Axelsson,et al. Real valued iterative methods for solving complex symmetric linear systems , 2000, Numer. Linear Algebra Appl..
[23] I. Moret. On RD-rational Krylov approximations to the core-functions of exponential integrators , 2007, Numer. Linear Algebra Appl..
[24] Anne Greenbaum,et al. Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..
[25] Daniele Bertaccini,et al. Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .
[26] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[27] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[28] Vladimir Druskin,et al. Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..
[29] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[30] R. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .
[31] R. Varga,et al. Geometric convergence to e−z by rational functions with real poles , 1975 .
[32] R. Varga,et al. Extended numerical computations on the “1/9” conjecture in rational approximation theory , 1984 .
[33] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[34] H. V. D. Vorst,et al. An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .
[35] R. Varga,et al. Geometric convergence toe−z by rational functions with real poles , 1975 .
[36] L. Trefethen,et al. Talbot quadratures and rational approximations , 2006 .
[37] Marco Vianello,et al. Efficient Computation of the Exponential Operator for Large, Sparse, Symmetric Matrices , 2000 .
[38] Roland W. Freund,et al. A Parallel Iterative Method for Exponential Propagation , 1995, PPSC.
[39] Yousef Saad,et al. Preconditioning the Matrix Exponential Operator with Applications , 1998, J. Sci. Comput..