Acceleration Techniques for Approximating the Matrix Exponential Operator

In this paper we investigate some well-established and more recent methods that aim at approximating the vector $\exp(A)v$ when $A$ is a large symmetric negative semidefinite matrix, by efficiently combining subspace projections and spectral transformations. We show that some recently developed acceleration procedures may be restated as preconditioning techniques for the partial fraction expansion form of an approximating rational function. These new results allow us to devise a priori strategies to select the associated acceleration parameters; theoretical and numerical results are shown to justify these choices. Moreover, we provide a performance evaluation among several numerical approaches to approximate the action of the exponential of large matrices. Our numerical experiments provide a new, and in some cases, unexpected picture of the actual behavior of the discussed methods.

[1]  I. Moret,et al.  An interpolatory approximation of the matrix exponential based on Faber polynomials , 2001 .

[2]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[3]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[4]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[5]  N. Higham The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[6]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[7]  Igor Moret,et al.  Interpolating functions of matrices on zeros of quasi‐kernel polynomials , 2005, Numer. Linear Algebra Appl..

[8]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[9]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[10]  R. Freund,et al.  Software for simplified Lanczos and QMR algorithms , 1995 .

[11]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[12]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[13]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[14]  D. Bertaccini,et al.  REAL-VALUED ITERATIVE ALGORITHMS FOR COMPLEX SYMMETRIC LINEAR SYSTEMS∗ , 2007 .

[15]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[16]  L. Knizhnerman,et al.  Two polynomial methods of calculating functions of symmetric matrices , 1991 .

[17]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[18]  Marco Vianello,et al.  Efficient computation of the exponential operator for large, sparse, symmetric matrices , 2000, Numer. Linear Algebra Appl..

[19]  Arieh Iserles How Large is the Exponential of a Banded Matrix , 1999 .

[20]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[21]  Valeria Simoncini,et al.  Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..

[22]  Owe Axelsson,et al.  Real valued iterative methods for solving complex symmetric linear systems , 2000, Numer. Linear Algebra Appl..

[23]  I. Moret On RD-rational Krylov approximations to the core-functions of exponential integrators , 2007, Numer. Linear Algebra Appl..

[24]  Anne Greenbaum,et al.  Using Nonorthogonal Lanczos Vectors in the Computation of Matrix Functions , 1998, SIAM J. Sci. Comput..

[25]  Daniele Bertaccini,et al.  Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .

[26]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[27]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[28]  Vladimir Druskin,et al.  Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic , 1995, Numer. Linear Algebra Appl..

[29]  Oliver G. Ernst,et al.  A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..

[30]  R. Freund On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .

[31]  R. Varga,et al.  Geometric convergence to e−z by rational functions with real poles , 1975 .

[32]  R. Varga,et al.  Extended numerical computations on the “1/9” conjecture in rational approximation theory , 1984 .

[33]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[34]  H. V. D. Vorst,et al.  An iterative solution method for solving f ( A ) x = b , using Krylov subspace information obtained for the symmetric positive definite matrix A , 1987 .

[35]  R. Varga,et al.  Geometric convergence toe−z by rational functions with real poles , 1975 .

[36]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[37]  Marco Vianello,et al.  Efficient Computation of the Exponential Operator for Large, Sparse, Symmetric Matrices , 2000 .

[38]  Roland W. Freund,et al.  A Parallel Iterative Method for Exponential Propagation , 1995, PPSC.

[39]  Yousef Saad,et al.  Preconditioning the Matrix Exponential Operator with Applications , 1998, J. Sci. Comput..