Analysis and Design of a 195.6 dBc/Hz Peak FoM P-N Class-B Oscillator With Transformer-Based Tail Filtering

A complementary p-n class-B oscillator with two magnetically coupled second harmonic tail resonators is presented and compared to an N-only reference one. An in depth analysis of phase noise, based on direct derivation of the Impulse Sensitivity Function (ISF), provides design insights on the optimization of the tail resonators. In principle the complementary p-n oscillator has the same optimum Figure of Merit (FoM) of the N-only at half the voltage swing. At a supply voltage of 1.5 V, the maximum allowed oscillation amplitude of the N-only is constrained, by reliability considerations, to be smaller than the value that corresponds to the optimum FoM even when 1.8 V thick oxide transistors are used. For an oscillation amplitude that ensures reliable operation and the same tank, the p-n oscillator achieves a FoM 2 to 3 dB better than the N, only depending on the safety margin taken in the design. After frequency division by 2, the p-n oscillator has a measured phase noise that ranges from -150.8 to -151.5 dBc/Hz at 10 MHz offset from the carrier when the frequency of oscillation is varied from 7.35 to 8.4 GHz. With a power consumption of 6.3 mW, a peak FoM of 195.6 dBc/Hz is achieved.

[1]  Jesper Bank,et al.  A Harmonic-Oscillator Design Methodology Based on Describing Functions , 2006 .

[2]  D. Cordeau,et al.  A 5-GHz fully integrated full PMOS low-phase-noise LC VCO , 2005, IEEE Journal of Solid-State Circuits.

[3]  Hsiang-Hui Chang,et al.  A HSPA+/WCDMA/EDGE 40nm Modem SoC with embedded RF transceiver supporting RX diversity , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[4]  E. Xiao,et al.  Hot carrier and soft breakdown effects on VCO performance , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[5]  Chun-Geik Tan,et al.  A Multiband Mobile Analog TV Tuner SoC With 78-dB Harmonic Rejection and GSM Blocker Detection in 65-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[6]  A. L. Lacaita,et al.  An efficient linear-time variant simulation technique of oscillator phase sensitivity function , 2012, 2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD).

[7]  Christian Kranz,et al.  Evolution on SoC Integration : GSM Baseband-Radio in 0.13 μm CMOS Extended by Fully Integrated Power Management Unit , 2008, ISSCC 2008.

[8]  A. Demir,et al.  Phase noise in oscillators: a unifying theory and numerical methods for characterization , 2000 .

[9]  Maryam Rofougaran,et al.  A 65nm 3G femtocell multiband transceiver , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[10]  P. Andreani,et al.  On the phase-noise and phase-error performances of multiphase LC CMOS VCOs , 2004, IEEE Journal of Solid-State Circuits.

[11]  Abira Sengupta IEEE Journal of Solid-State Circuits App Early Access Update [Society News] , 2017 .

[12]  F. Kaertner Determination of the correlation spectrum of oscillators with low noise , 1989 .

[13]  Luca Fanori,et al.  A Dither-Less All Digital PLL for Cellular Transmitters , 2012, IEEE Journal of Solid-State Circuits.

[14]  Pietro Andreani,et al.  Tail current noise suppression in RF CMOS VCOs , 2002, IEEE J. Solid State Circuits.

[15]  Min Chen,et al.  A 70-Mb/s 100.5-dBm Sensitivity 65-nm LP MIMO Chipset for WiMAX Portable Router , 2012, IEEE Journal of Solid-State Circuits.

[16]  A. Hajimiri,et al.  Design issues in CMOS differential LC oscillators , 1999, IEEE J. Solid State Circuits.

[17]  Jae Kyung Lee,et al.  A 65nm CMOS low-power small-size multistandard, multiband mobile broadcasting receiver SoC , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[18]  Robert B. Staszewski,et al.  A study of RF oscillator reliability in nanoscale CMOS , 2013, 2013 European Conference on Circuit Theory and Design (ECCTD).

[19]  Ali Hajimiri,et al.  Concepts and methods in optimization of integrated LC VCOs , 2001, IEEE J. Solid State Circuits.

[20]  Andrea Bevilacqua,et al.  A 0.06 mm$^{2}$ 11 mW Local Oscillator for the GSM Standard in 65 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.

[21]  Salvatore Levantino,et al.  Frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion , 2002, IEEE J. Solid State Circuits.

[22]  A. Mazzanti,et al.  Class-C Harmonic CMOS VCOs, With a General Result on Phase Noise , 2008, IEEE Journal of Solid-State Circuits.

[23]  E. Hegazi,et al.  23.4 A Filtering Technique to Lower Oscillator Phase Noise , 2008 .

[24]  Pietro Andreani,et al.  A 2.5-to-3.3GHz CMOS Class-D VCO , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[25]  David Murphy,et al.  Phase Noise in LC Oscillators: A Phasor-Based Analysis of a General Result and of Loaded $Q$ , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  Liang-Hung Lu,et al.  A High-Performance CMOS Voltage-Controlled Oscillator for Ultra-Low-Voltage Operations , 2007, IEEE Transactions on Microwave Theory and Techniques.

[27]  Pietro Andreani,et al.  A Push–Pull Class-C CMOS VCO , 2013, IEEE Journal of Solid-State Circuits.

[28]  Pietro Andreani,et al.  A TX VCO for WCDMA/EDGE in 90 nm RF CMOS , 2011, IEEE Journal of Solid-State Circuits.

[29]  Rinaldo Castello,et al.  A 1 mA, -120.5 dbc/Hz at 600 kHz from 1.9 GHz fully tuneable LC CMOS VCO , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[30]  A. Abidi,et al.  Physical processes of phase noise in differential LC oscillators , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[31]  Pietro Andreani,et al.  More on the Phase Noise Performance of CMOS , 2006 .

[32]  Bumman Kim,et al.  A low phase-noise CMOS VCO with harmonic tuned LC tank , 2006 .

[33]  Robert B. Staszewski,et al.  An Ultra-Low Phase Noise Class-F 2 CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability , 2015, IEEE Journal of Solid-State Circuits.

[34]  Ali Hajimiri,et al.  A general theory of phase noise in electrical oscillators , 1998 .

[35]  Antonio Liscidini,et al.  An Intuitive Analysis of Phase Noise Fundamental Limits Suitable for Benchmarking LC Oscillators , 2014, IEEE Journal of Solid-State Circuits.

[36]  F. Svelto,et al.  Oxide Breakdown After RF Stress: Experimental Analysis and Effects on Power Amplifier Operation , 2006, 2006 IEEE International Reliability Physics Symposium Proceedings.

[37]  A. Fard,et al.  More on the $1/{\rm f}^{2}$ Phase Noise Performance of CMOS Differential-Pair LC-Tank Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[38]  Danilo Manstretta,et al.  Analysis and Design of a 54 GHz Distributed “Hybrid” Wave Oscillator Array With Quadrature Outputs , 2014, IEEE Journal of Solid-State Circuits.

[39]  C. Samori,et al.  Phase noise degradation at high oscillation amplitudes in LC-tuned VCO's , 2000, IEEE Journal of Solid-State Circuits.

[40]  Peter R. Kinget,et al.  Integrated GHz Voltage Controlled Oscillators , 1999 .

[41]  Xin Li,et al.  A High-Linearity WCDMA/GSM Reconfigurable Transceiver in 0.13-$\mu\hbox{m}$ CMOS , 2013, IEEE Transactions on Microwave Theory and Techniques.

[42]  HongMo Wang A 9.8 GHz back-gate tuned VCO in 0.35 /spl mu/m CMOS , 1999 .

[43]  Robert B. Staszewski,et al.  A Class-F CMOS Oscillator , 2013, IEEE Journal of Solid-State Circuits.

[44]  Jean-Olivier Plouchart,et al.  Design of wide-band CMOS VCO for multiband wireless LAN applications , 2003, IEEE J. Solid State Circuits.

[45]  Kartikeya Mayaram,et al.  A 475 mV, 4.9 GHz Enhanced Swing Differential Colpitts VCO With Phase Noise of -136 dBc/Hz at a 3 MHz Offset Frequency , 2011, IEEE Journal of Solid-State Circuits.

[46]  G. Li Puma,et al.  A 2-GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization , 2000, IEEE Journal of Solid-State Circuits.

[47]  Pietro Andreani,et al.  Class-D CMOS Oscillators , 2013, IEEE Journal of Solid-State Circuits.

[48]  Ehsan Afshari,et al.  A Low-Phase-Noise Wide-Tuning-Range Oscillator Based on Resonant Mode Switching , 2012, IEEE Journal of Solid-State Circuits.

[49]  Salvatore Levantino,et al.  Impact of non-quasi-static effects on 1/f3 phase noise in a 1.9-to-2.6 GHz oscillator , 2014, 2014 IEEE Radio Frequency Integrated Circuits Symposium.

[50]  A. Fard,et al.  A study of phase noise in colpitts and LC-tank CMOS oscillators , 2005, IEEE Journal of Solid-State Circuits.

[51]  J. Kissing,et al.  Evolution on SoC Integration: GSM Baseband-Radio in 0.13 $\mu{\hbox {m}}$ CMOS Extended by Fully Integrated Power Management Unit , 2008, IEEE Journal of Solid-State Circuits.

[52]  Robert B. Staszewski,et al.  A Low Phase Noise Oscillator Principled on Transformer-Coupled Hard Limiting , 2014, IEEE Journal of Solid-State Circuits.

[53]  Koichiro Tanaka,et al.  A fully integrated 60GHz CMOS transceiver chipset based on WiGig/IEEE802.11ad with built-in self calibration for mobile applications , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[54]  Pietro Andreani,et al.  A 36mW/9mW power-scalable DCO in 55nm CMOS for GSM/WCDMA frequency synthesizers , 2012, 2012 IEEE International Solid-State Circuits Conference.

[55]  Robert Bogdan Staszewski,et al.  Ultra-low phase noise 7.2–8.7 Ghz clip-and-restore oscillator with 191 dBc/Hz FoM , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[56]  Jie Liu,et al.  A 50-to-930MHz quadrature-output fractional-N frequency synthesizer with 770-to-1860MHz single-inductor LC-VCO and without noise folding effect for multistandard DTV tuners , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[57]  Rinaldo Castello,et al.  A 195.6dBc/Hz peak FoM P-N class-B oscillator with transformer-based tail filtering , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[58]  Koichiro Tanaka,et al.  A Fully Integrated 60-GHz CMOS Transceiver Chipset Based on WiGig/IEEE 802.11ad With Built-In Self Calibration for Mobile Usage , 2013, IEEE Journal of Solid-State Circuits.