Higher Order Properties of the Wild Bootstrap Under Misspecification

We examine the higher order properties of the wild bootstrap (Wu, 1986) in a linear regression model with stochastic regressors. We find that the ability of the wild bootstrap to provide a higher order refinement is contingent upon whether the errors are mean independent of the regressors or merely uncorrelated with them. In the latter case, the wild bootstrap may fail to match some of the terms in an Edgeworth expansion of the full sample test statistic. Nonetheless, we show that the wild bootstrap still has a lower maximal asymptotic risk as an estimator of the true distribution than a normal approximation, in shrinking neighborhoods of properly specified models. To assess the practical implications of this result we conduct a Monte Carlo study contrasting the performance of the wild bootstrap with a normal approximation and the traditional nonparametric bootstrap.

[1]  R. Beran Estimated Sampling Distributions: The Bootstrap and Competitors , 1982 .

[2]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[3]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[4]  A. M. Robert Taylor,et al.  BOOTSTRAP UNIT ROOT TESTS FOR TIME SERIES WITH NONSTATIONARY VOLATILITY , 2007, Econometric Theory.

[5]  R. Bhatia Matrix Analysis , 1996 .

[6]  A. Chesher A MIRROR IMAGE INVARIANCE FOR M-ESTIMATORS , 1995 .

[7]  Petra E. Todd,et al.  Earnings Functions, Rates of Return and Treatment Effects: The Mincer Equation and Beyond , 2005, SSRN Electronic Journal.

[8]  Donald W. K. Andrews,et al.  Higher‐Order Improvements of a Computationally Attractive k‐Step Bootstrap for Extremum Estimators , 2002 .

[9]  Joel L. Horowitz,et al.  Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators , 1996 .

[10]  A. Chesher,et al.  The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator , 1987 .

[11]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[12]  James J. Heckman,et al.  Chapter 7 Earnings Functions, Rates of Return and Treatment Effects: The Mincer Equation and Beyond , 2006 .

[13]  Emmanuel Flachaire,et al.  The wild bootstrap, tamed at last , 2001 .

[14]  Second Order and $L^p$-Comparisons between the Bootstrap and Empirical Edgeworth Expansion Methodologies , 1989 .

[15]  E. Giné,et al.  Decoupling: From Dependence to Independence , 1998 .

[16]  D. Freedman Bootstrapping Regression Models , 1981 .

[17]  James G. MacKinnon,et al.  Wild Bootstrap Tests for IV Regression , 2010 .

[18]  J. Horowitz Chapter 52 The Bootstrap , 2001 .

[19]  Regina Y. Liu,et al.  On a Partial Correction by the Bootstrap , 1987 .

[20]  C. J. Babu,et al.  On Asymptotic Optimality of the Bootstrap , 1990 .

[21]  Nour Meddahi,et al.  BOOTSTRAPPING REALIZED VOLATILITY , 2009 .

[22]  Patrick M. Kline,et al.  A Score Based Approach to Wild Bootstrap Inference , 2010 .

[23]  J. Horowitz Bootstrap Methods in Econometrics: Theory and Numerical Performance , 1995 .

[24]  James H. Stock,et al.  The Other Transformation in Econometric Practice: Robust Tools for Inference , 2010 .

[25]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[26]  E. Mammen Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .

[27]  J. Mincer Schooling, Experience, and Earnings , 1976 .

[28]  R. Rao,et al.  Normal Approximation and Asymptotic Expansions , 1976 .

[29]  J. Ghosh,et al.  ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION , 1978 .

[30]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[31]  H. White Using Least Squares to Approximate Unknown Regression Functions , 1980 .

[32]  Douglas L. Miller,et al.  Bootstrap-Based Improvements for Inference with Clustered Errors , 2007 .

[33]  Ib M. Skovgaard,et al.  On Multivariate Edgeworth Expansions , 1986 .