Signed graphs whose signed Colin de Verdière parameter is two
暂无分享,去创建一个
Hein van der Holst | Frank J. Hall | Zhongshan Li | Marina Arav | H. Holst | Zhongshan Li | Marina Arav
[1] Thomas Zaslavsky. Signed graphs: To: T. Zaslausky, Discrete Appl. Math 4 (1982) 47-74 , 1983, Discret. Appl. Math..
[2] Yves Colin de Verdière,et al. On a new graph invariant and a criterion for planarity , 1991, Graph Structure Theory.
[3] A.M.H. Gerards. Graphs and polyhedra binary spaces and cutting planes , 1988 .
[4] Hein van der Holst. On the “largeur d'arborescence” , 2002 .
[5] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[6] A. Schrijver,et al. Signed graphs, regular matroids, grafts , 1986 .
[7] M. Fiedler. Special matrices and their applications in numerical mathematics , 1986 .
[8] H. P. Williams. THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .
[9] Andrei Kotlov,et al. NOTE Spectral Characterization of Tree-Width-Two Graphs , 2000, Comb..
[10] Hein van der Holst,et al. Graphs with Magnetic Schrödinger Operators of Low Corank , 2002, J. Comb. Theory, Ser. B.
[11] Paul D. Seymour,et al. Decomposition of regular matroids , 1980, J. Comb. Theory, Ser. B.
[12] Hein van der Holst,et al. The inertia set of a signed graph , 2012 .
[13] Reinhard Diestel,et al. Graph Theory , 1997 .
[14] H. van der Holst,et al. Topological and Spectral Graph Characterizations , 1996 .
[15] Yves Colin de Verdière,et al. Multiplicities of Eigenvalues and Tree-Width of Graphs , 1998, J. Comb. Theory B.