Turing's Titanic machine?

Embodied and disembodied computing at the Turing Centenary.

[1]  C. Teuscher,et al.  Alan Turing: Life and Legacy of a Great Thinker , 2004, Springer Berlin Heidelberg.

[2]  S. Barry Cooper,et al.  Emergence as a computability-theoretic phenomenon , 2009, Appl. Math. Comput..

[3]  Jan van Leeuwen,et al.  How We Think of Computing Today , 2008, CiE.

[4]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[5]  B. Jack Copeland,et al.  EVEN TURING MACHINES CAN COMPUTE UNCOMPUTABLE FUNCTIONS , 1998 .

[6]  P. Odifreddi,et al.  Incomputability in Nature , 2003 .

[7]  Christof Teuscher Turing's connectionism - an investigation of neural network architectures , 2002, Discrete mathematics and theoretical computer science.

[8]  Martin Ziegler,et al.  Physically-relativized Church-Turing Hypotheses: Physical foundations of computing and complexity theory of computational physics , 2008, Appl. Math. Comput..

[9]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[10]  Edwin J. Beggs,et al.  Limits to measurement in experiments governed by algorithms† , 2009, Mathematical Structures in Computer Science.

[11]  David Leavitt The Man Who Knew Too Much: Alan Turing and the Invention of the Computer , 2005 .

[12]  G. Kreisel Church's Thesis: A Kind of Reducibility Axiom for Constructive Mathematics , 1970 .

[13]  Hajnal Andréka,et al.  General relativistic hypercomputing and foundation of mathematics , 2009, Natural Computing.

[14]  I. Prigogine The end of certainty , 1997 .

[15]  D. Saari,et al.  Off to infinity in finite time , 1995 .

[16]  Cristian S. Calude,et al.  Quantum randomness and value indefiniteness , 2006, quant-ph/0611029.

[17]  C. Yates,et al.  ON THE DEGREES OF INDEX SETS , 2010 .

[18]  Ilya Prigogine,et al.  From Being To Becoming , 1980 .

[19]  K. Vela Velupillai,et al.  Uncomputability and undecidability in economic theory , 2009, Appl. Math. Comput..

[20]  Martin Ziegler Physically-Relativized Church-Turing Hypotheses , 2008, ArXiv.

[21]  Martin D. Davis,et al.  Why there is no such discipline as hypercomputation , 2006, Appl. Math. Comput..

[22]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  C. E. M. Yates,et al.  On the degrees of index sets. II , 1966 .

[24]  Jerzy Mycka,et al.  A foundation for real recursive function theory , 2009, Ann. Pure Appl. Log..

[25]  P. Smolensky On the proper treatment of connectionism , 1988, Behavioral and Brain Sciences.

[26]  S. Pinker How the Mind Works , 1999, Philosophy after Darwin.

[27]  R. Brooks The relationship between matter and life , 2001, Nature.

[28]  B. Cooper The Man Who Knew Too Much : Alan Turing and the Invention of the Computer , 2006 .

[29]  István Németi,et al.  Relativistic computers and the Turing barrier , 2006, Appl. Math. Comput..

[30]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[31]  Andrew Hodges,et al.  Alan Turing: The Enigma , 1983 .

[32]  Aaron Sloman,et al.  Some Requirements for Human-Like Robots: Why the Recent Over-Emphasis on Embodiment Has Held Up Progress , 2009, Creating Brain-Like Intelligence.

[33]  Peter Hertling Is the Mandelbrot set computable? , 2005, Math. Log. Q..

[34]  Ning Zhong,et al.  The Wave Equation with Computable Initial Data Whose Unique Solution Is Nowhere Computable , 1996, Math. Log. Q..

[35]  Martin D. Davis The Myth of Hypercomputation , 2004 .

[36]  Selmer Bringsjord,et al.  Are we evolved computers?: A critical review of Steven Pinker's How the mind works , 2001 .

[37]  Peter Wegner,et al.  The Church-Turing Thesis: Breaking the Myth , 2005, CiE.

[38]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[39]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[40]  Yuri Matiyasevich,et al.  Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.

[41]  Mark Braverman,et al.  Filled Julia Sets with Empty Interior Are Computable , 2007, Found. Comput. Math..

[42]  Gregory J. Chaitin Metaphysics, Metamathematics and Metabiology , 2011 .