ON PERFORMANCE OF METHODS FOR STATISTICAL SURVEILLANCE

[1]  Göran Åkermo CONSTANT PREDICTIVE VALUE OF AN ALARM , 1994 .

[2]  S. Zacks SURVEY OF CLASSICAL AND BAYESIAN APPROACHES TO THE CHANGE-POINT PROBLEM: FIXED SAMPLE AND SEQUENTIAL PROCEDURES OF TESTING AND ESTIMATION11Research supported in part by ONR Contracts N00014-75-0725 at The George Washington University and N00014-81-K-0407 at SUNY-Binghamton. , 1983 .

[3]  James M. Lucas,et al.  Average Run Lengths for Exponentially Weighted Moving Average Control Schemes Using the Markov Chain Approach , 1990 .

[4]  J. Muth Optimal Properties of Exponentially Weighted Forecasts , 1960 .

[5]  G. Moustakides Optimal stopping times for detecting changes in distributions , 1986 .

[6]  M. A. Girshick,et al.  A BAYES APPROACH TO A QUALITY CONTROL MODEL , 1952 .

[7]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[8]  D. Siegmund Sequential Analysis: Tests and Confidence Intervals , 1985 .

[9]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[10]  Marianne Frisén,et al.  Characterization of methods for surveillance by optimality , 1994 .

[11]  P. Robinson,et al.  Average Run Lengths of Geometric Moving Average Charts by Numerical Methods , 1978 .

[12]  Stephen V. Crowder,et al.  Design of Exponentially Weighted Moving Average Schemes , 1989 .

[13]  Fah Fatt Gan,et al.  The run length distribution of a cumulative sum control chart , 1993 .

[14]  Emmanuel Yashchin,et al.  Some aspects of the theory of statistical control schemes , 1987 .

[15]  G. Lindgren,et al.  Alarm characteristics for a flood warning system with deterministic components , 1990 .

[16]  E. Yashchin Analysis of CUSUM and other Markov-type control schemes by using empirical distributions , 1992 .

[17]  S. W. Roberts A Comparison of Some Control Chart Procedures , 1966 .

[18]  Emmanuel Yashchin,et al.  Performance of CUSUM control schemes for serially correlated observations , 1993 .

[19]  N. L. Johnson,et al.  A Simple Theoretical Approach to Cumulative Sum Control Charts , 1961 .

[20]  K. E. Case,et al.  Development and Evaluation of Control Charts Using Exponentially Weighted Moving Averages , 1989 .

[21]  M Frisén,et al.  Evaluations of methods for statistical surveillance. , 1992, Statistics in medicine.

[22]  Rickie J. Domangue,et al.  Some omnibus exponentially weighted moving average statistical process monitoring schemes , 1991 .

[23]  S. Crowder A simple method for studying run-length distribution of exponentially weighted moving average charts , 1987 .

[24]  B. Bergman,et al.  Quality from Customer Needs to Customer Satisfaction , 1994 .

[25]  A. F. Bissell,et al.  Cusum Techniques for Quality Control , 1969 .

[26]  Fah Fatt Gan Computing the Percentage Points of the Run Length Distribution of an Exponentially Weighted Moving Average Control Chart , 1991 .

[27]  A. Shiryaev On Optimum Methods in Quickest Detection Problems , 1963 .

[28]  James M. Lucas,et al.  Combined Shewhart-CUSUM Quality Control Schemes , 1982 .

[29]  Charles W. Champ,et al.  A a comparison of the markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts , 1991 .

[30]  William H. Woodall,et al.  The Distribution of the Run Length of One-Sided CUSUM Procedures for Continuous Random Variables , 1983 .

[31]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .