Equilibration techniques for solving contact problems with Coulomb friction

Abstract In this paper, we consider residual and equilibrated error indicators for contact problems with Coulomb friction. The contact problem is handled within the abstract framework of saddle point problems. More precisely, the non-penetration constraint and the friction law is realized as a variationally consistent weak formulation in terms of a localized dual Lagrange multiplier space. Thus from the displacement, we can easily compute in a local post-process the Lagrange multiplier which acts as a Neumann condition on the possible contact zone. Having computed the discrete Lagrange multiplier, we can apply standard error estimators by replacing the unknown Neumann data by its approximation. As it is shown in [1] , this results in an error estimator for a one-sided contact problem without friction. Here, we consider more general situations and discuss two additional contact terms which measure the non-conformity of the discrete Lagrange multiplier. Numerical results in two and three dimensions illustrate the flexibility of the approach and show the influence of the material parameters on the adaptive refinement process.

[1]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[2]  Hertz On the Contact of Elastic Solids , 1882 .

[3]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[4]  P. W. Christensen,et al.  Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .

[5]  Serge Nicaise,et al.  An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .

[6]  R. Hoppe,et al.  Adaptive multilevel methods for obstacle problems , 1994 .

[7]  Wolfgang A. Wall,et al.  Finite deformation frictional mortar contact using a semi‐smooth Newton method with consistent linearization , 2010 .

[8]  Pierre Ladevèze,et al.  A general method for recovering equilibrating element tractions , 1996 .

[9]  Barbara Wohlmuth,et al.  Nonlinear complementarity functions for plasticity problems with frictional contact , 2009 .

[10]  Serge Nicaise,et al.  Residual a posteriori error estimators for contact problems in elasticity , 2007 .

[11]  Ralf Kornhuber,et al.  On constrained Newton linearization and multigrid for variational inequalities , 2002, Numerische Mathematik.

[12]  Ralf Kornhuber,et al.  Adaptive finite element methods for variational inequalities , 1993 .

[13]  P. W. Christensen,et al.  Formulation and comparison of algorithms for frictional contact problems , 1998 .

[14]  A. Ern,et al.  Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids , 2009 .

[15]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[16]  H. Blum,et al.  An adaptive finite element discretisation¶for a simplified Signorini problem , 2000 .

[17]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[18]  Tomasz Koziara,et al.  Semismooth Newton method for frictional contact between pseudo-rigid bodies , 2008 .

[19]  M. Fukushima,et al.  "Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" , 2010 .

[20]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[21]  Yves Renard,et al.  A uniqueness criterion for the Signorini problem with Coulomb friction , 2006 .

[22]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[23]  Patrick Hild,et al.  Approximation of the unilateral contact problem by the mortar finite element method , 1997 .

[24]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[25]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[26]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[27]  Pierre Alart,et al.  Méthode de Newton généralisée en mécanique du contact , 1997 .

[28]  Weimin Han,et al.  A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind , 2005 .

[29]  Patrick Hild,et al.  Residual Error Estimators for Coulomb Friction , 2009, SIAM J. Numer. Anal..

[30]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[31]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[32]  Peter Wriggers,et al.  Adaptive Finite Elements for Elastic Bodies in Contact , 1999, SIAM J. Sci. Comput..

[33]  Jong-Shi Pang,et al.  NE/SQP: A robust algorithm for the nonlinear complementarity problem , 1993, Math. Program..

[34]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[35]  Wolfgang A. Wall,et al.  A finite deformation mortar contact formulation using a primal–dual active set strategy , 2009 .

[36]  J. T. Oden,et al.  A posteriori error estimation of h-p finite element approximations of frictional contact problems , 1994 .

[37]  G. Saxcé,et al.  New Inequality and Functional for Contact with Friction: The Implicit Standard Material Approach∗ , 1991 .

[38]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[39]  P. W. Christensen A nonsmooth Newton method for elastoplastic problems , 2002 .

[40]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[41]  Gustavo C. Buscaglia,et al.  An adaptive finite element approach for frictionless contact problems , 2001 .

[42]  Martin Vohralík A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization , 2008 .

[43]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[44]  K. Bathe,et al.  The inf-sup test , 1993 .

[45]  Weimin Han,et al.  A posteriori error analysis for finite element solutions of a frictional contact problem , 2006 .

[46]  J. Tinsley Oden,et al.  Local a posteriori error estimators for variational inequalities , 1993 .

[47]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[48]  Claes Johnson,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .

[49]  D. Arnold,et al.  RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .

[50]  Peter W. Christensen,et al.  A semi-smooth newton method for elasto-plastic contact problems , 2002 .

[51]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[52]  Barbara I. Wohlmuth An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes , 2007, J. Sci. Comput..

[53]  Patrick Hild,et al.  An Error Estimate for the Signorini Problem with Coulomb Friction Approximated by Finite Elements , 2007, SIAM J. Numer. Anal..

[54]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[55]  Serge Nicaise,et al.  A posteriori error estimations of residual type for Signorini's problem , 2005, Numerische Mathematik.

[56]  D. Arnold,et al.  Mixed Finite Elements for Elasticity in the Stress-Displacement Formulation , 2002 .

[57]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[58]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[59]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[60]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[61]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[62]  Peter Wriggers,et al.  Different a posteriori error estimators and indicators for contact problems , 1998 .

[63]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[64]  J. C. Simo,et al.  An augmented lagrangian treatment of contact problems involving friction , 1992 .

[65]  F. Ben NUMERICAL SIMULATION OF SOME VARIATIONAL INEQUALITIES ARISEN FROM UNILATERAL CONTACT PROBLEMS BY THE FINITE ELEMENT METHODS , 2000 .

[66]  Weimin Han,et al.  A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations , 2004 .

[67]  Rolf Krause,et al.  Efficient simulation of multi‐body contact problems on complex geometries: A flexible decomposition approach using constrained minimization , 2009 .

[68]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[69]  Barbara I. Wohlmuth,et al.  Efficient Algorithms for Problems with Friction , 2007, SIAM J. Sci. Comput..

[70]  Dietrich Braess,et al.  A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.

[71]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[72]  Barbara I. Wohlmuth,et al.  A posteriori error estimator and error control for contact problems , 2009, Math. Comput..

[73]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[74]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[75]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[76]  Andreas Veeser On a posteriori error estimation for constant obstacle problems , 2001 .

[77]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[78]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[79]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[80]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[81]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..