Equilibration techniques for solving contact problems with Coulomb friction
暂无分享,去创建一个
[1] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[2] Hertz. On the Contact of Elastic Solids , 1882 .
[3] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[4] P. W. Christensen,et al. Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .
[5] Serge Nicaise,et al. An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .
[6] R. Hoppe,et al. Adaptive multilevel methods for obstacle problems , 1994 .
[7] Wolfgang A. Wall,et al. Finite deformation frictional mortar contact using a semi‐smooth Newton method with consistent linearization , 2010 .
[8] Pierre Ladevèze,et al. A general method for recovering equilibrating element tractions , 1996 .
[9] Barbara Wohlmuth,et al. Nonlinear complementarity functions for plasticity problems with frictional contact , 2009 .
[10] Serge Nicaise,et al. Residual a posteriori error estimators for contact problems in elasticity , 2007 .
[11] Ralf Kornhuber,et al. On constrained Newton linearization and multigrid for variational inequalities , 2002, Numerische Mathematik.
[12] Ralf Kornhuber,et al. Adaptive finite element methods for variational inequalities , 1993 .
[13] P. W. Christensen,et al. Formulation and comparison of algorithms for frictional contact problems , 1998 .
[14] A. Ern,et al. Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids , 2009 .
[15] P. Deuflhard. Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .
[16] H. Blum,et al. An adaptive finite element discretisation¶for a simplified Signorini problem , 2000 .
[17] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[18] Tomasz Koziara,et al. Semismooth Newton method for frictional contact between pseudo-rigid bodies , 2008 .
[19] M. Fukushima,et al. "Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" , 2010 .
[20] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[21] Yves Renard,et al. A uniqueness criterion for the Signorini problem with Coulomb friction , 2006 .
[22] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[23] Patrick Hild,et al. Approximation of the unilateral contact problem by the mortar finite element method , 1997 .
[24] R. Glowinski,et al. Numerical Analysis of Variational Inequalities , 1981 .
[25] Barbara I. Wohlmuth,et al. A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..
[26] P. Alart,et al. A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .
[27] Pierre Alart,et al. Méthode de Newton généralisée en mécanique du contact , 1997 .
[28] Weimin Han,et al. A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind , 2005 .
[29] Patrick Hild,et al. Residual Error Estimators for Coulomb Friction , 2009, SIAM J. Numer. Anal..
[30] F. Facchinei,et al. Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .
[31] F. B. Belgacem,et al. EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .
[32] Peter Wriggers,et al. Adaptive Finite Elements for Elastic Bodies in Contact , 1999, SIAM J. Sci. Comput..
[33] Jong-Shi Pang,et al. NE/SQP: A robust algorithm for the nonlinear complementarity problem , 1993, Math. Program..
[34] O. Schenk,et al. ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .
[35] Wolfgang A. Wall,et al. A finite deformation mortar contact formulation using a primal–dual active set strategy , 2009 .
[36] J. T. Oden,et al. A posteriori error estimation of h-p finite element approximations of frictional contact problems , 1994 .
[37] G. Saxcé,et al. New Inequality and Functional for Contact with Friction: The Implicit Standard Material Approach∗ , 1991 .
[38] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[39] P. W. Christensen. A nonsmooth Newton method for elastoplastic problems , 2002 .
[40] H. Rentz-Reichert,et al. UG – A flexible software toolbox for solving partial differential equations , 1997 .
[41] Gustavo C. Buscaglia,et al. An adaptive finite element approach for frictionless contact problems , 2001 .
[42] Martin Vohralík. A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization , 2008 .
[43] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[44] K. Bathe,et al. The inf-sup test , 1993 .
[45] Weimin Han,et al. A posteriori error analysis for finite element solutions of a frictional contact problem , 2006 .
[46] J. Tinsley Oden,et al. Local a posteriori error estimators for variational inequalities , 1993 .
[47] Patrick T. Harker,et al. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..
[48] Claes Johnson,et al. ADAPTIVE FINITE ELEMENT METHODS FOR THE OBSTACLE PROBLEM , 1992 .
[49] D. Arnold,et al. RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .
[50] Peter W. Christensen,et al. A semi-smooth newton method for elasto-plastic contact problems , 2002 .
[51] Mark Ainsworth,et al. A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .
[52] Barbara I. Wohlmuth. An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes , 2007, J. Sci. Comput..
[53] Patrick Hild,et al. An Error Estimate for the Signorini Problem with Coulomb Friction Approximated by Finite Elements , 2007, SIAM J. Numer. Anal..
[54] Rolf Krause,et al. Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..
[55] Serge Nicaise,et al. A posteriori error estimations of residual type for Signorini's problem , 2005, Numerische Mathematik.
[56] D. Arnold,et al. Mixed Finite Elements for Elasticity in the Stress-Displacement Formulation , 2002 .
[57] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[58] T. Laursen. Computational Contact and Impact Mechanics , 2003 .
[59] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[60] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[61] R. Kornhuber. Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .
[62] Peter Wriggers,et al. Different a posteriori error estimators and indicators for contact problems , 1998 .
[63] Barbara I. Wohlmuth,et al. An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..
[64] J. C. Simo,et al. An augmented lagrangian treatment of contact problems involving friction , 1992 .
[65] F. Ben. NUMERICAL SIMULATION OF SOME VARIATIONAL INEQUALITIES ARISEN FROM UNILATERAL CONTACT PROBLEMS BY THE FINITE ELEMENT METHODS , 2000 .
[66] Weimin Han,et al. A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations , 2004 .
[67] Rolf Krause,et al. Efficient simulation of multi‐body contact problems on complex geometries: A flexible decomposition approach using constrained minimization , 2009 .
[68] P. Alart,et al. A generalized Newton method for contact problems with friction , 1988 .
[69] Barbara I. Wohlmuth,et al. Efficient Algorithms for Problems with Friction , 2007, SIAM J. Sci. Comput..
[70] Dietrich Braess,et al. A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.
[71] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[72] Barbara I. Wohlmuth,et al. A posteriori error estimator and error control for contact problems , 2009, Math. Comput..
[73] Olaf Schenk,et al. Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..
[74] H. Hertz. Ueber die Berührung fester elastischer Körper. , 1882 .
[75] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[76] Andreas Veeser. On a posteriori error estimation for constant obstacle problems , 2001 .
[77] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[78] Kazufumi Ito,et al. Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.
[79] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[80] Douglas N. Arnold,et al. Mixed finite elements for elasticity , 2002, Numerische Mathematik.
[81] Faker Ben Belgacem,et al. Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..