Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics

This paper develops the P^K-based Runge-Kutta discontinuous Galerkin (RKDG) methods with WENO limiter for the one- and two-dimensional special relativistic hydrodynamics, K=1,2,3, which is an extension of the work [J.X. Qiu, C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput. 26 (2005) 907-929]. The WENO limiter for the RKDG method is adaptively implemented via two following steps: the ''troubled'' cells are first identified by using a TVB modified minmod function, and then a new polynomial solution inside the ''troubled'' cells is locally reconstructed to replace the RKDG solution by using the WENO technique based on the cell average values of the RKDG solution in the neighboring cells as well as the original cell averages of the ''troubled'' cells. Several test problems in one and two dimensions are computed using the developed RKDG methods with WENO limiter. The computations demonstrate that our methods are stable, accurate, and robust in maintaining accuracy for simulating flows in the special relativistic hydrodynamics.

[1]  Huazhong Tang,et al.  An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics , 2012 .

[2]  Claus-Dieter Munz,et al.  New Algorithms for Ultra-relativistic Numerical Hydrodynamics , 1993 .

[3]  Gerald Warnecke,et al.  A Runge–Kutta discontinuous Galerkin method for the Euler equations , 2005 .

[4]  Huazhong Tang,et al.  High-Order Accurate Runge-Kutta (Local) Discontinuous Galerkin Methods for One- and Two-Dimensional Fractional Diffusion Equations , 2012 .

[5]  Shamsul Qamar,et al.  Kinetic schemes for the relativistic gas dynamics , 2004, Numerische Mathematik.

[6]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[7]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.

[8]  Jianxian Qiu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO-Type Limiters: Three-Dimensional Unstructured Meshes , 2012 .

[9]  J. Flaherty,et al.  Parallel, adaptive finite element methods for conservation laws , 1994 .

[10]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[11]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[12]  Huazhong Tang,et al.  A direct Eulerian GRP scheme for relativistic hydrodynamics: Two-dimensional case , 2012, J. Comput. Phys..

[13]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[14]  Luciano Rezzolla,et al.  Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes , 2011, 1103.2426.

[15]  Huazhong Tang,et al.  An Adaptive Moving Mesh Method for Two-Dimensional Relativistic Hydrodynamics , 2012 .

[16]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[17]  Chi-Wang Shu,et al.  A Comparison of Troubled-Cell Indicators for Runge-Kutta Discontinuous Galerkin Methods Using Weighted Essentially Nonoscillatory Limiters , 2005, SIAM J. Sci. Comput..

[18]  G. Bodo,et al.  The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics , 2005, astro-ph/0505200.

[19]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[20]  Jean-François Remacle,et al.  An Adaptive Discontinuous Galerkin Technique with an Orthogonal Basis Applied to Compressible Flow Problems , 2003, SIAM Rev..

[21]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[22]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[23]  WENLONG DAI,et al.  An Iterative Riemann Solver for Relativistic Hydrodynamics , 1997, SIAM J. Sci. Comput..

[24]  Pierre Sagaut,et al.  A problem-independent limiter for high-order Runge—Kutta discontinuous Galerkin methods , 2001 .

[25]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[26]  S. A. E. G. Falle,et al.  An upwind numerical scheme for relativistic hydrodynamics with a general equation of state , 1996 .

[27]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[28]  Gerald Warnecke,et al.  A high-order kinetic flux-splitting method for the relativistic magnetohydrodynamics , 2005 .

[29]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[30]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[31]  Grant J. Mathews,et al.  Relativistic Numerical Hydrodynamics , 2003 .

[32]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[33]  James R. Wilson Numerical Study of Fluid Flow in a Kerr Space , 1972 .

[34]  Sihong Shao,et al.  Higher-order accurate Runge-Kutta discontinuous Galerkin methods fora nonlinear Dirac model , 2006 .

[35]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[36]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[37]  Jonathan C. McKinney,et al.  WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.

[38]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[39]  G. Mellema,et al.  General Relativistic Hydrodynamics with a Roe solver , 1994, astro-ph/9411056.

[40]  Jaw-Yen Yang,et al.  A Kinetic Beam Scheme for Relativistic Gas Dynamics , 1997 .

[41]  Chi-Wang Shu,et al.  A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods , 2013, J. Comput. Phys..

[42]  Philip A. Hughes,et al.  Simulations of Relativistic Extragalactic Jets , 1994 .

[43]  Ewald Müller,et al.  The analytical solution of the Riemann problem in relativistic hydrodynamics , 1994, Journal of Fluid Mechanics.

[44]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[45]  S.S.M. Wong,et al.  Relativistic Hydrodynamics and Essentially Non-oscillatory Shock Capturing Schemes , 1995 .

[46]  Huazhong Tang,et al.  Steger–Warming flux vector splitting method for special relativistic hydrodynamics , 2014 .

[47]  Ewald Müller,et al.  Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics , 1996 .

[48]  Dinshaw S. Balsara,et al.  Riemann Solver for Relativistic Hydrodynamics , 1994 .