Simulation of oriented patterns with prescribed local orientation using anisotropic Gaussian fields

We consider a stochastic framework for oriented texture modeling. We study a large class of generalized Gaussian fields, called Generalized Anisotropic Fractional Brownian Fields (GAFBF), which combines a local version of an Anisotropic Fractional Brownian Fields (AFBF) with Multifractional Brownian Fields (MBF). This mixture enables to control both the local orientation and the roughness of the texture. A second model based on fields deformation and called Warped Anisotropic Fractional Brownian Fields (WAFBF) is also studied. In this paper, we first establish theoretical results of these new stochastic models, and describe their properties. The notion of orientation for localizable random fields we introduced in our previous works is relevant to give explicit formulas for the orientations of these two models, insuring the control of the expected one. Furthermore, we investigate different ways to simulate a collection of textures with prescribed local orientation and roughness. These procedures serve for concretely observe the behavior of these fields ans as a benchmark for the validation of anisotropy detection tools. We finally propose methods for estimating the anisotropy of a specific AFBF and for characterizing the probability distribution of orientation estimators.

[1]  A. Fulínski,et al.  Fractional Brownian Motions , 2020, Acta Physica Polonica B.

[2]  Laurent Condat,et al.  Wavelet-based orientation of localizable Gaussian fields , 2017 .

[3]  F. Richard Tests of isotropy for rough textures of trended images , 2016 .

[4]  Laurent Condat,et al.  Mod\'elisations de textures par champ gaussien \`a orientation locale prescrite , 2015, 1503.06716.

[5]  Laurent Condat,et al.  Texture modeling by Gaussian fields with prescribed local orientation , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[6]  A. Ayache,et al.  Linear multifractional stable motion: fine path properties , 2013, 1302.1670.

[7]  Michael Unser,et al.  A Unifying Parametric Framework for 2D Steerable Wavelet Transforms , 2013, SIAM J. Imaging Sci..

[8]  L. Moisan,et al.  A Turning-Band Method for the Simulation of Anisotropic Fractional Brownian Fields , 2012 .

[9]  Dimitri Van De Ville,et al.  Steerable pyramids and tight wavelet frames in L 2 ( R d ) , 2011 .

[10]  Gabriel Peyré,et al.  Locally Parallel Texture Modeling , 2011, SIAM J. Imaging Sci..

[11]  Brigitte Forster-Heinlein,et al.  Steerable Wavelet Frames Based on the Riesz Transform , 2010, IEEE Transactions on Image Processing.

[12]  Emmanuel Papadakis,et al.  The geometry and the analytic properties of isotropic multiresolution analysis , 2009, Adv. Comput. Math..

[13]  Grant,et al.  BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES , 2009 .

[14]  Sophie Lambert-Lacroix,et al.  On Fractional Gaussian Random Fields Simulations , 2007 .

[15]  David A. Benson,et al.  Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .

[16]  Thierry Blu,et al.  Isotropic polyharmonic B-splines: scaling functions and wavelets , 2005, IEEE Transactions on Image Processing.

[17]  From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.

[18]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[19]  Ioannis A. Kakadiaris,et al.  Nonseparable Radial Frame Multiresolution Analysis in Multidimensions , 2003 .

[20]  K. Falconer The Local Structure of Random Processes , 2003 .

[21]  Anne Estrade,et al.  Anisotropic Analysis of Some Gaussian Models , 2003 .

[22]  Rachid Harba,et al.  Fast and exact synthesis for 1-D fractional Brownian motion and fractional Gaussian noises , 2002, IEEE Signal Processing Letters.

[23]  Antoine Ayache,et al.  The Generalized Multifractional Field: A Nice Tool for the Study of the Generalized Multifractional Brownian Motion , 2002 .

[24]  Michael L. Stein,et al.  Fast and Exact Simulation of Fractional Brownian Surfaces , 2002 .

[25]  K. Falconer Tangent Fields and the Local Structure of Random Fields , 2002 .

[26]  O. Perrin,et al.  Reducing non-stationary random fields to stationarity and isotropy using a space deformation , 2000 .

[27]  J. L. Véhel,et al.  The Generalized Multifractional Brownian Motion , 2000 .

[28]  Peter Hall,et al.  Fractal analysis of surface roughness by using spatial data , 1999 .

[29]  Andrew T. A. Wood,et al.  Simulation of Multifractional Brownian Motion , 1998, COMPSTAT.

[30]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[31]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[32]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .

[33]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[34]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .

[35]  Rama Chellappa,et al.  Model-based texture Segmentation and Classification , 1993, Handbook of Pattern Recognition and Computer Vision.

[36]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[37]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .

[38]  R. Davies,et al.  Tests for Hurst effect , 1987 .

[39]  Luc Van Gool,et al.  Texture analysis Anno 1983 , 1985, Comput. Vis. Graph. Image Process..

[40]  G. Letac Which functions preserve Cauchy laws , 1977 .

[41]  B Julesz,et al.  Inability of Humans to Discriminate between Visual Textures That Agree in Second-Order Statistics—Revisited , 1973, Perception.

[42]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[43]  G. Matheron Principles of geostatistics , 1963 .

[44]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[45]  D. Krige A statistical approach to some basic mine valuation problems on the Witwatersrand, by D.G. Krige, published in the Journal, December 1951 : introduction by the author , 1951 .

[46]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .