Spatiotopic coding and remapping in humans

How our perceptual experience of the world remains stable and continuous in the face of continuous rapid eye movements still remains a mystery. This review discusses some recent progress towards understanding the neural and psychophysical processes that accompany these eye movements. We firstly report recent evidence from imaging studies in humans showing that many brain regions are tuned in spatiotopic coordinates, but only for items that are actively attended. We then describe a series of experiments measuring the spatial and temporal phenomena that occur around the time of saccades, and discuss how these could be related to visual stability. Finally, we introduce the concept of the spatio-temporal receptive field to describe the local spatiotopicity exhibited by many neurons when the eyes move.

[1]  Akihiro Yagi,et al.  Saccadic Compression of Rectangle and Kanizsa Figures: Now You See It, Now You Don't , 2009, PloS one.

[2]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[3]  L. Matin,et al.  Visual Perception of Direction for Stimuli Flashed During Voluntary Saccadic Eye Movements , 1965, Science.

[4]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[5]  K. Hoffmann,et al.  Neural Dynamics of Saccadic Suppression , 2009, Journal of Neuroscience.

[6]  K. Jellinger,et al.  The Space Between Our Ears. How the brain represents visual space , 2006 .

[7]  D. Burr,et al.  Visual aftereffects , 2009, Current Biology.

[8]  Michael J. Morgan,et al.  The Space Between Our Ears: How the Brain Represents Visual Space , 2001 .

[9]  Bart Krekelberg,et al.  Neural Correlates of Saccadic Suppression in Humans , 2004, Current Biology.

[10]  M Concetta Morrone,et al.  Saccadic eye movements cause compression of time as well as space , 2005, Nature Neuroscience.

[11]  Geraint Rees,et al.  Blinking Suppresses the Neural Response to Unchanging Retinal Stimulation , 2005, Current Biology.

[12]  Ravi S. Menon,et al.  Representation of Head-Centric Flow in the Human Motion Complex , 2006, The Journal of Neuroscience.

[13]  Markus Lappe,et al.  Effect of saccadic adaptation on localization of visual targets. , 2005, Journal of neurophysiology.

[14]  J Douglas Crawford,et al.  Cortical mechanisms for trans-saccadic memory and integration of multiple object features , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  K. Abe,et al.  Selective gene expression after brain ischemia. , 1993, Progress in brain research.

[16]  H. Honda Perceptual localization of visual stimuli flashed during saccades , 1989, Perception & psychophysics.

[17]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[18]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[19]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[20]  M. Lappe,et al.  Perception of visual space at the time of pro- and anti-saccades. , 2004, Journal of neurophysiology.

[21]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[22]  Marcus Kaiser,et al.  Perisaccadic Mislocalization Orthogonal to Saccade Direction , 2004, Neuron.

[23]  Julie D. Golomb,et al.  The Native Coordinate System of Spatial Attention Is Retinotopic , 2008, The Journal of Neuroscience.

[24]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[26]  Yale E. Cohen,et al.  A common reference frame for movement plans in the posterior parietal cortex , 2002, Nature Reviews Neuroscience.

[27]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[28]  D. Burr,et al.  Contrast sensitivity at high velocities , 1982, Vision Research.

[29]  M. Concetta Morrone,et al.  Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[30]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[31]  N. Bischof,et al.  [Investigations and considerations of directional perception during voluntary saccadic eye movements]. , 1968, Psychologische Forschung.

[32]  H. Honda Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background , 1993, Vision Research.

[33]  Arnold Ziesche,et al.  Computational models of spatial updating in peri-saccadic perception , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[34]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[35]  Heiner Deubel,et al.  Transsaccadic memory of position and form. , 2002, Progress in brain research.

[36]  N. Bischof,et al.  Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen , 1968 .

[37]  Maria Concetta Morrone,et al.  Spatial attention modulates the spatiotopicity of human MT complex , 2009 .

[38]  Rainer Herpers,et al.  Apparent motion during saccadic suppression periods , 2010, Experimental Brain Research.

[39]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[40]  Wilsaan M. Joiner,et al.  Neuronal mechanisms for visual stability: progress and problems , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  Michael R. Ibbotson,et al.  Saccadic Modulation of Neural Responses: Possible Roles in Saccadic Suppression, Enhancement, and Time Compression , 2008, The Journal of Neuroscience.

[42]  John Ross,et al.  A blinding flash increases saccadic compression , 2010 .

[43]  Jan Theeuwes,et al.  Visual attention and stability , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[45]  David E. Irwin,et al.  Evidence against visual integration across saccadic eye movements , 1983, Perception & psychophysics.

[46]  Derek H. Arnold,et al.  Spatially Localized Distortions of Event Time , 2006, Current Biology.

[47]  Carsten Finke,et al.  Perisaccadic Compression Correlates with Saccadic Peak Velocity: Differential Association of Eye Movement Dynamics with Perceptual Mislocalization Patterns , 2007, The Journal of Neuroscience.

[48]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[49]  Keiji Uchikawa,et al.  The role of presaccadic compression of visual space in spatial remapping across saccadic eye movements , 2003, Vision Research.

[50]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[51]  D. Burr,et al.  Temporal integration of optic flow, measured by contrast and coherence thresholds , 2001, Vision Research.

[52]  Keiji Uchikawa,et al.  Apparent size of an object remains uncompressed during presaccadic compression of visual space , 2001, Vision Research.

[53]  P. Wenderoth,et al.  Retinotopic encoding of the direction aftereffect , 2008, Vision Research.

[54]  M. Hayhoe,et al.  Integration of Form across Saccadic Eye Movements , 1991, Perception.

[55]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  David E. Irwin,et al.  Failure to integrate information from successive fixations. , 1983, Science.

[57]  David Burr,et al.  Vision: In the Blink of an Eye , 2005, Current Biology.

[58]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.

[59]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[60]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[61]  T. Womelsdorf,et al.  Dynamic shifts of visual receptive fields in cortical area MT by spatial attention , 2006, Nature Neuroscience.

[62]  Simona Celebrini,et al.  Privileged Processing of the Straight-Ahead Direction in Primate Area V1 , 2010, Neuron.

[63]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[64]  C O ROELOFS,et al.  Apparent size. , 1955, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[65]  David Burr,et al.  Suppression of the magnocellular pathway during saccades , 1996, Behavioural Brain Research.

[66]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[68]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[69]  David C. Burr,et al.  Separate visual representations for perception and action revealed by saccadic eye movements , 2001, Current Biology.

[70]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[71]  Guido Marco Cicchini,et al.  Spatiotemporal Distortions of Visual Perception at the Time of Saccades , 2009, The Journal of Neuroscience.

[72]  M Concetta Morrone,et al.  Neural mechanisms for timing visual events are spatially selective in real-world coordinates , 2007, Nature Neuroscience.

[73]  Ehud Zohary,et al.  Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. , 2007, Cerebral cortex.

[74]  C D Frith,et al.  Modulating irrelevant motion perception by varying attentional load in an unrelated task. , 1997, Science.

[75]  C. Colby,et al.  Spatial updating in area LIP is independent of saccade direction. , 2006, Journal of neurophysiology.

[76]  Nathan J Hall,et al.  Remapping for visual stability , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[77]  D. Heeger,et al.  The Normalization Model of Attention , 2009, Neuron.

[78]  John Ross,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[79]  Markus Lappe,et al.  The fate of object features during perisaccadic mislocalization. , 2006, Journal of vision.

[80]  D. Burr,et al.  Selective depression of motion sensitivity during saccades. , 1982, The Journal of physiology.

[81]  G. Kovács,et al.  Position specificity of adaptation-related face aftereffects , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[82]  Michael F Land,et al.  Vision and the representation of the surroundings in spatial memory , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[83]  S. Mateeff Saccadic eye movements and localization of visual stimuli , 1978, Perception & psychophysics.

[84]  Thomas Wachtler,et al.  Perceptual evidence for saccadic updating of color stimuli. , 2008, Journal of vision.

[85]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[86]  D. Burr,et al.  Spatiotopic selectivity of BOLD responses to visual motion in human area MT , 2007, Nature Neuroscience.

[87]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[88]  D. Melcher Selective attention and the active remapping of object features in trans-saccadic perception , 2009, Vision Research.

[89]  Katherine M. Armstrong,et al.  Visuomotor Origins of Covert Spatial Attention , 2003, Neuron.

[90]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[91]  David Whitney,et al.  Attention Narrows Position Tuning of Population Responses in V1 , 2009, Current Biology.

[92]  Irving Biederman,et al.  fMRIa to complementary, contour-deleted images of objects , 2005 .

[93]  David C Burr,et al.  Fusion of Visual and Auditory Stimuli during Saccades: A Bayesian Explanation for Perisaccadic Distortions , 2007, The Journal of Neuroscience.

[94]  J. Crawford,et al.  Transsaccadic integration of visual features in a line intersection task , 2006, Experimental Brain Research.

[95]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[96]  B J Richmond,et al.  Vision during saccadic eye movements. II. A corollary discharge to monkey superior colliculus. , 1980, Journal of neurophysiology.

[97]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[98]  Anna Ma-Wyatt,et al.  Seeing and ballistic pointing at perisaccadic targets. , 2005, Journal of vision.

[99]  W Pieter Medendorp,et al.  Spatial constancy mechanisms in motor control , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[100]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[101]  D. Burr,et al.  Selective suppression of the magnocellular visual pathway during saccadic eye movements , 1994, Nature.

[102]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[103]  Avishai Henik,et al.  Parietal Lobe Lesions Disrupt Saccadic Remapping of Inhibitory Location Tagging , 2004, Journal of Cognitive Neuroscience.

[104]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.