Visuomotor Behaviors in Larval Zebrafish after GFP-Guided Laser Ablation of the Optic Tectum

The optic tectum is the largest visual center in most vertebrates and the main target for retinal ganglion cells (RGCs) conveying visual information from the eye to the brain. The retinotectal projection has served as an important model in many areas of developmental neuroscience. However, knowledge of the function of the tectum is limited. We began to address this issue using laser ablations and subsequent behavioral testing in zebrafish. We used a transgenic zebrafish line that expresses green-fluorescent protein in RGCs projecting to the tectum. By aiming a laser beam at the labeled retinal fibers demarcating the tectal neuropil, the larval tectum could be selectively destroyed. We tested whether tectum-ablated zebrafish larvae, when presented with large-field movements in their surroundings, displayed optokinetic responses (OKR) or optomotor responses (OMR), two distinct visuomotor behaviors that compensate for self-motion. Neither OKR nor OMR were found to be dependent on intact retinotectal connections. Also, visual acuity remained unaffected. Tectum ablation, however, slowed down the OKR by reducing the frequency of saccades but left tracking velocity, gain, and saccade amplitude unaffected. Removal of the tectum had no effect on the processing of second-order motion, to which zebrafish show both OKR and OMR, suggesting that the tectum is not an integral part of the circuit that extracts higher-order cues in the motion pathway.

[1]  K. Frisch,et al.  Beiträge zur Physiologie der Pigmentzellen in der Fischhaut , 1911, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[2]  S. Dijkgraaf Lokalisationsversuche am Fischgehirn , 2005, Experientia.

[3]  J. Bouyer,et al.  Optokinetic nystagmus in the pigeon (Columba livia) , 1981, Experimental Brain Research.

[4]  W. Precht,et al.  Pathways mediating optokinetic responses of vestibular nucleus neurons in the rat , 1980, Pflügers Archiv.

[5]  K. Hoffmann,et al.  Direction specific neurons in the pretectum of the frog (Rana esculenta) , 1980, Journal of comparative physiology.

[6]  D. Meyer,et al.  Reizversuche im Tectum opticum freischwimmender Kabeljaue bzw. Dorsche (Gadus morrhua L.) , 1970, Pflügers Archiv.

[7]  H. Gioanni,et al.  Optokinetic nystagmus in the pigeon (Columba livia) II. Role of the pretectal nucleus of the accessory optic system (AOS) , 2004, Experimental Brain Research.

[8]  M. Jeannerod,et al.  Effects of unilateral superior colliculus ablation on oculomotor and vestibulo-ocular responses in the cat , 2004, Experimental Brain Research.

[9]  Florian Engert,et al.  Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons , 2002, Nature.

[10]  E. Debski,et al.  Activity-dependent mapping in the retinotectal projection , 2002, Current Opinion in Neurobiology.

[11]  K. Hoffmann,et al.  Visual direction-selective neurons in the pretectum of the rainbow trout , 2002, Brain Research Bulletin.

[12]  A. Fuchs,et al.  The brainstem burst generator for saccadic eye movements , 2002, Experimental Brain Research.

[13]  J. B. Demb,et al.  Cellular Basis for the Response to Second-Order Motion Cues in Y Retinal Ganglion Cells , 2001, Neuron.

[14]  Donald M. O'Malley,et al.  Rapid lesioning of large numbers of identified vertebrate neurons: applications in zebrafish , 2001, Journal of Neuroscience Methods.

[15]  S. Schmid,et al.  Analysis of the Activity-Deprived Zebrafish Mutantmacho Reveals an Essential Requirement of Neuronal Activity for the Development of a Fine-Grained Visuotopic Map , 2001, The Journal of Neuroscience.

[16]  J. N. Kay,et al.  Retinal Ganglion Cell Genesis Requires lakritz, a Zebrafish atonal Homolog , 2001, Neuron.

[17]  Matthew C Smear,et al.  Perception of Fourier and non-Fourier motion by larval zebrafish , 2000, Nature Neuroscience.

[18]  C. Neumann,et al.  Patterning of the zebrafish retina by a wave of sonic hedgehog activity. , 2000, Science.

[19]  Herwig Baier,et al.  Zebrafish on the move: towards a behavior–genetic analysis of vertebrate vision , 2000, Current Opinion in Neurobiology.

[20]  William A. Harris,et al.  Genetic Disorders of Vision Revealed by a Behavioral Screen of 400 Essential Loci in Zebrafish , 1999, The Journal of Neuroscience.

[21]  C. Baker Central neural mechanisms for detecting second-order motion , 1999, Current Opinion in Neurobiology.

[22]  J. Fetcho,et al.  Laser Ablations Reveal Functional Relationships of Segmental Hindbrain Neurons in Zebrafish , 1999, Neuron.

[23]  Li I. Zhang,et al.  A critical window for cooperation and competition among developing retinotectal synapses , 1998, Nature.

[24]  J. Dowling,et al.  Zebrafish retinal mutants , 1998, Vision Research.

[25]  C. Holt,et al.  Target selection: invasion, mapping and cell choice , 1998, Current Opinion in Neurobiology.

[26]  S. Grillner,et al.  Visual pathways for postural control and negative phototaxis in lamprey. , 1997, Journal of neurophysiology.

[27]  B. Torres,et al.  Tectal codification of eye movements in goldfish studied by electrical microstimulation , 1997, Neuroscience.

[28]  S. Easter,et al.  The development of vision in the zebrafish (Danio rerio). , 1996, Developmental biology.

[29]  A. Cowey,et al.  Impairment of the perception of second order motion but not first order motion in a patient with unilateral focal brain damage , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  D. Northmore,et al.  The role of torus longitudinalis in equilibrium orientation measured with the dorsal light reflex. , 1996, Brain, behavior and evolution.

[31]  J B Hurley,et al.  A behavioral screen for isolating zebrafish mutants with visual system defects. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Sperling,et al.  The functional architecture of human visual motion perception , 1995, Vision Research.

[33]  Cori Bargmann,et al.  Laser killing of cells in Caenorhabditis elegans. , 1995, Methods in cell biology.

[34]  T Ledgeway,et al.  The Duration of the Motion Aftereffect following Adaptation to First-Order and Second-Order Motion , 1994, Perception.

[35]  S. Easter,et al.  Development of the retinofugal projections in the embryonic and larval zebrafish (Brachydanio rerio) , 1994, The Journal of comparative neurology.

[36]  M. Wullimann The teleostean torus longitudinalis: a short review on its structure, histochemistry, connectivity, possible function and phylogeny. , 1994, European journal of morphology.

[37]  S. Mori Localization of extratectally evoked visual response in the corpus and valvula cerebelli in carp, and cerebellar contribution to ‘dorsal light reaction’ behavior , 1993, Behavioural Brain Research.

[38]  A. T. Smith,et al.  Motion defined exclusively by second-order characteristics does not evoke optokinetic nystagmus , 1992, Visual Neuroscience.

[39]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[40]  P. Cavanagh,et al.  Motion: the long and short of it. , 1989, Spatial vision.

[41]  C A Stuermer,et al.  Retinotopic organization of the developing retinotectal projection in the zebrafish embryo , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[43]  Roger E. Davis,et al.  Spatial discrimination in goldfish following bilateral tectal ablation , 1987, Behavioural Brain Research.

[44]  D. Stehouwer Effect of tectotomy and decerebration on spontaneous and elicited behavior of tadpoles and juvenile frogs. , 1987, Behavioral neuroscience.

[45]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[46]  J. Ewert Tectal Mechanisms That Underlie Prey-Catching and Avoidance Behaviors in Toads , 1984 .

[47]  Okihide Hikosaka,et al.  Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus , 1983, Brain Research.

[48]  G. Lázár,et al.  Re-investigation of the role of the accessory optic system and pretectum in the horizontal optokinetic head nystagmus of the frog. Lesion experiments. , 1983, Acta biologica Hungarica.

[49]  K. Fite,et al.  Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: a functional analysis. , 1982, Brain, behavior and evolution.

[50]  R. Kishida Comparative study on the teleostean optic tectum. Lamination and cytoarchitecture. , 1979, Journal fur Hirnforschung.

[51]  J. Schmidt,et al.  The paths and destinations of the induced ipsilateral retinal projection in goldfish. , 1978, Journal of embryology and experimental morphology.

[52]  D. Yager,et al.  Visual function in goldfish with unilateral and bilateral tectal ablation , 1977, Brain Research.

[53]  S. Easter,et al.  The role of the optic tectum in various visually mediated behaviors of goldfish , 1977, Brain Research.

[54]  A. Bass Effects of lesions of the optic tectum on the ability of turtles to locate food stimuli. , 1977, Brain, behavior and evolution.

[55]  H Collewijn,et al.  Oculomotor areas in the rabbits midbrain and pretectum. , 1975, Journal of neurobiology.

[56]  D. Ingle,et al.  Two Visual Systems in the Frog , 1973, Science.

[57]  S. Ebbesson,et al.  Visual Discrimination in Sharks without Optic Tectum , 1973, Science.

[58]  E. Kicliter Flux, wavelength and movement discrimination in frogs: forebrain and midbrain contributions. , 1973, Brain, behavior and evolution.

[59]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. , 1972, Journal of neurophysiology.

[60]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movements. , 1972, Journal of neurophysiology.

[61]  S. Easter,et al.  Pursuit eye movements in goldfish (Carassius auratus). , 1972, Vision research.

[62]  G. Lázár Role of the accessory optic system in the optokinetic nystagmus of the frog. , 1972, Brain, behavior and evolution.

[63]  M. Gentle The central nervous control of colour change in the minnow (Phoxinus phoxinus L.). I. Blinding and the effects of tectal removal on normal and blind fish. , 1971, The Journal of experimental biology.

[64]  D. L. Meyer,et al.  [Stimulation experiment in the optic tectum of freely swimming cods (Gadus morrhua L.). An experimental contribution to the sensorimotor coordination of the brain stem]. , 1970, Pflugers Archiv : European journal of physiology.

[65]  M. B. Bender,et al.  The superior colliculi and eye movements. An experimental study in the monkey. , 1966, Archives of neurology.

[66]  L. Hogben,et al.  The Pigmentary Effector System. VI. The Dual Character of Endocrine Co-Ordination in Amphibian Colour Change , 1931 .

[67]  L. Hogben,et al.  The pigmentary effector system.—II , 1922 .

[68]  T. Serwold,et al.  Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases , 2022 .