GALAXY CLUSTERS: A NOVEL LOOK AT DIFFUSE BARYONS WITHSTANDING DARK MATTER GRAVITY

In galaxy clusters, the equilibria of the intracluster plasma (ICP) and of the gravitationally dominant dark matter (DM) are governed by the hydrostatic equation and by the Jeans equation, respectively; in either case gravity is withstood by the corresponding, entropy-modulated pressure. Jeans, with the DM “entropy” set to K ∝ rα and α ≈ 1.25–1.3 applying from groups to rich clusters, yields our radial α-profiles; these, compared to the empirical Navarro–Frenk–White distribution, are flatter at the center and steeper in the outskirts as required by recent gravitational lensing data. In the ICP, on the other hand, the entropy run k(r) is mainly shaped by shocks, as steadily set by supersonic accretion of gas at the cluster boundary, and intermittently driven from the center by merging events or by active galactic nuclei (AGNs); the resulting equilibrium is described by the exact yet simple formalism constituting our ICP Supermodel. With two parameters, this accurately represents the runs of density n(r) and temperature T(r) as required by up-to-date X-ray data on surface brightness and spectroscopy for both cool core (CC) and non-cool core (NCC) clusters; the former are marked by a middle temperature peak, whose location is predicted from rich clusters to groups. The Supermodel inversely links the inner runs of n(r) and T(r), and highlights their central scaling with entropy nc ∝ k−1c and Tc ∝ k0.35c, to yield radiative cooling times tc ≈ 0.3(kc/15 keV cm2)1.2 Gyr. We discuss the stability of the central values so focused: against radiative erosion of kc in the cool dense conditions of CC clusters, that triggers recurrent AGN activities resetting it back; or against energy inputs from AGNs and mergers whose effects are saturated by the hot central conditions of NCC clusters. From the Supermodel, we also derive as limiting cases the classic polytropic β-models, and the “mirror” model with T(r) ∝ σ2(r) suitable for NCC and CC clusters, respectively; these limiting cases highlight how the ICP temperature T(r) strives to mirror the DM velocity dispersion σ2(r) away from energy and entropy injections. Finally, we discuss how the Supermodel connects information derived from X-ray and gravitational lensing observations.

[1]  A. Cavaliere,et al.  STRUCTURE AND HISTORY OF DARK MATTER HALOS PROBED WITH GRAVITATIONAL LENSING , 2009, 0903.1589.

[2]  Megan Donahue,et al.  INTRACLUSTER MEDIUM ENTROPY PROFILES FOR A CHANDRA ARCHIVAL SAMPLE OF GALAXY CLUSTERS , 2009, 0902.1802.

[3]  Roma,et al.  DARK MATTER EQUILIBRIA IN GALAXIES AND GALAXY SYSTEMS , 2008, 0810.1245.

[4]  O. Høst,et al.  MEASUREMENT OF THE DARK MATTER VELOCITY ANISOTROPY IN GALAXY CLUSTERS , 2008, 0808.2049.

[5]  T. Broadhurst,et al.  Comparison of Cluster Lensing Profiles with ΛCDM Predictions , 2008, 0805.2617.

[6]  M. Donahue,et al.  CHANDRA STUDIES OF THE X-RAY GAS PROPERTIES OF GALAXY GROUPS , 2008, 0805.2320.

[7]  S. Molendi,et al.  Radial temperature profiles for a large sample of galaxy clusters observed with XMM-Newton , 2008, 0804.1909.

[8]  P. Mazzotta,et al.  A Giant Metrewave Radio Telescope Multifrequency Radio Study of the Isothermal Core of the Poor Galaxy Cluster AWM 4 , 2008, 0804.1906.

[9]  Yago Ascasibar,et al.  The dynamical structure of dark matter haloes , 2008, 0802.4348.

[10]  J. Kneib,et al.  LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations , 2008, 0802.0770.

[11]  T. Broadhurst,et al.  Mass and gas profiles in A1689: joint X-ray and lensing analysis , 2007, 0711.3908.

[12]  Durham,et al.  Towards a holistic view of the heating and cooling of the intracluster medium , 2007, 0706.2768.

[13]  A. Cavaliere,et al.  Missing Baryons, from Clusters to Groups of Galaxies , 2007, 0712.1441.

[14]  J. Ostriker,et al.  Thermal Balance in the Intracluster Medium: Is AGN Feedback Necessary? , 2007, 0712.0824.

[15]  D. Buote,et al.  Trouble for AGN Feedback? The Puzzle of the Core of the Galaxy Cluster AWM 4 , 2007, 0712.0783.

[16]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[17]  Y. Hoffman,et al.  Evolution of the Phase-Space Density in Dark Matter Halos , 2007, 0706.0006.

[18]  S. Hansen,et al.  Measuring the dark matter velocity anisotropy in galaxy clusters , 2007, 0705.4680.

[19]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[20]  Michael Kuhlen,et al.  Formation and Evolution of Galaxy Dark Matter Halos and Their Substructure , 2007, astro-ph/0703337.

[21]  J. Ostriker,et al.  Radiative Feedback from Massive Black Holes in Elliptical Galaxies: AGN Flaring and Central Starburst Fueled by Recycled Gas , 2007, astro-ph/0703057.

[22]  H. Tananbaum,et al.  Black hole blowback , 2007 .

[23]  H. Tananbaum,et al.  Black hole blowback. A single hole, samller than the solar system, can control the destiny of an entire. , 2007, Scientific American.

[24]  Alexey Vikhlinin,et al.  Shocks and cold fronts in galaxy clusters , 2007, astro-ph/0701821.

[25]  R. Bower,et al.  Entropy Generation in Merging Galaxy Clusters , 2007, astro-ph/0701354.

[26]  Antwerp,et al.  Modelling shock heating in cluster mergers – I. Moving beyond the spherical accretion model , 2007, astro-ph/0701335.

[27]  C. Kaiser,et al.  HEATING VERSUS COOLING IN GALAXIES AND CLUSTERS OF GALAXIES , 2007 .

[28]  S. Borgani Heating, Cooling and Enrichment in Clusters with Hydrodynamical Himulations , 2007 .

[29]  Y. Hoffman,et al.  Entropy of gas and dark matter in galaxy clusters , 2006, astro-ph/0608304.

[30]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[31]  J. Silk,et al.  Suppressing cluster cooling flows by self‐regulated heating from a spatially distributed population of active galactic nuclei , 2006, astro-ph/0602566.

[32]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[33]  A. Fabian,et al.  X-ray Spectroscopy of Cooling Clusters , 2005, astro-ph/0512549.

[34]  B. Moore,et al.  A Universal density slope - velocity anisotropy relation for relaxed structures , 2004, astro-ph/0411473.

[35]  M. Donahue,et al.  An Observationally Motivated Framework for AGN Heating of Cluster Cores , 2005, astro-ph/0509176.

[36]  A. Cavaliere,et al.  Intracluster Entropy from Joint X-Ray and Sunyaev-Zel’dovich Observations , 2005, astro-ph/0508287.

[37]  Walter Dehnen,et al.  Dynamical insight into dark matter haloes , 2005, astro-ph/0506528.

[38]  MIT,et al.  The Powerful Outburst in Hercules A , 2005 .

[39]  A. Babul,et al.  A Simple and Accurate Model for Intracluster Gas , 2005, astro-ph/0504334.

[40]  G. Voit Tracing cosmic evolution with clusters of galaxies , 2004, astro-ph/0410173.

[41]  A. Cavaliere,et al.  Intracluster and Intragroup Entropy from Quasar Activity , 2004, astro-ph/0410028.

[42]  A. Babul,et al.  Models of the Intracluster Medium with Heating and Cooling: Explaining the Global and Structural X-Ray Properties of Clusters , 2004, astro-ph/0406329.

[43]  E. Scannapieco,et al.  Quasar Feedback: The Missing Link in Structure Formation , 2004, astro-ph/0401087.

[44]  Astronomy,et al.  XMM–Newton observations of two X-ray-bright galaxy groups – pushing out to r500 , 2003, astro-ph/0312419.

[45]  L. Moscardini,et al.  Properties of cluster satellites in hydrodynamical simulations , 2003, astro-ph/0304375.

[46]  R. Kraft,et al.  Reflections of Active Galactic Nucleus Outbursts in the Gaseous Atmosphere of M87 , 2003, astro-ph/0312576.

[47]  G. Bryan,et al.  On the Origin of Intracluster Entropy , 2003, astro-ph/0304447.

[48]  A. Finoguenov,et al.  The Birmingham-CfA cluster scaling project - III. Entropy and similarity in galaxy systems , 2003, astro-ph/0304048.

[49]  M. Arnaud,et al.  Entropy scaling in galaxy clusters: Insights from an XMM-Newton observation of the poor cluster A1983 , 2003, astro-ph/0304017.

[50]  Y. Jing,et al.  The growth and structure of dark matter haloes , 2002, astro-ph/0204108.

[51]  A. Cavaliere,et al.  Quasar Feedback on the Intracluster Medium , 2002, astro-ph/0210431.

[52]  G. Bryan,et al.  Modified Entropy Models for the Intracluster Medium , 2002, astro-ph/0205240.

[53]  G. Lewis,et al.  Physical Implications of the X-ray Properties of Galaxy Groups and Clusters , 2001, astro-ph/0109329.

[54]  G. Bryan,et al.  Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback , 2001, Nature.

[55]  S. Molendi,et al.  Is the Gas in Cooling Flows Multiphase? , 2001, astro-ph/0106552.

[56]  O. Dor'e,et al.  Competition between shocks and entropy floor: Unifying groups and clusters of galaxies , 2001, astro-ph/0106456.

[57]  J. Navarro,et al.  The Phase-Space Density Profiles of Cold Dark Matter Halos , 2001, astro-ph/0104002.

[58]  C. Norman,et al.  The Evolution of X-Ray Clusters and the Entropy of the Intracluster Medium , 2000, astro-ph/0003289.

[59]  L. Ciotti,et al.  Cooling Flows and Quasars. II. Detailed Models of Feedback-modulated Accretion Flows , 1999, astro-ph/9912064.

[60]  G. Bryan Explaining the Entropy Excess in Clusters and Groups of Galaxies without Additional Heating , 2000, astro-ph/0009286.

[61]  Non‐gravitational heating in the hierarchical formation of X‐ray clusters , 1999, astro-ph/9907112.

[62]  Pre-heated isentropic gas in groups of galaxies , 1998, astro-ph/9809159.

[63]  A. Cavaliere,et al.  Hot gas in clusters of galaxies: the punctuated equilibria model , 1998, astro-ph/9810498.

[64]  A. Fabian,et al.  Coulomb interactions in the intracluster medium , 1997, astro-ph/9710236.

[65]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[66]  J. Binney,et al.  Evolving cooling flows , 1995 .

[67]  C. Sarazin X-Ray Emission from Clusters of Galaxies , 1988 .

[68]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[69]  J. Binney Twisted and warped disks as consequences of heavy halos. [galactic structure , 1978 .

[70]  P. Serlemitsos,et al.  X-radiation from clusters of galaxies - Spectral evidence for a hot evolved gas , 1976 .

[71]  J. L. Culhane,et al.  Ariel 5 Observations of the X-ray Spectrum of the Perseus Cluster , 1976 .

[72]  H. Gursky THE X-RAY EMISSION FROM RICH CLUSTERS OF GALAXIES , 1973 .

[73]  H. Gursky,et al.  Extragalactic X-ray Sources and Associations of Galaxies , 1971, Nature.

[74]  L. Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[75]  J. Cole,et al.  Similarity and Dimensional Methods in Mechanics , 1960 .

[76]  H. B. Dwight Mathematical tables of elementary and some higher mathematical functions including trigonometric functions of decimals of degrees and logarithms , 1941 .