“What is a Thing?”: Topos Theory in the Foundations of Physics

The goal of this article is to summarise the first steps in developing a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. In doing so we provide a new answer to Heidegger’s timeless question “What is a thing?”.

[1]  A sheaf model for intuitionistic quantum mechanics , 1995, Appl. Categorical Struct..

[2]  Observables I: Stone Spectra , 2005, math-ph/0509020.

[3]  F. W. Lawvere,et al.  Sets for Mathematics , 2003 .

[4]  J. Baez Quantum Quandaries: a Category-Theoretic Perspective , 2004, quant-ph/0404040.

[5]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[6]  Martín Hötzel Escardó,et al.  PCF extended with real numbers : a domain-theoretic approach to higher-order exact real number computation , 1997 .

[7]  Observables II : Quantum Observables , 2005, math-ph/0509075.

[8]  Bob Coecke Quantum Logic in Intuitionistic Perspective , 2002, Stud Logica.

[9]  C. J. Isham,et al.  A topos foundation for theories of physics: I. Formal languages for physics , 2007 .

[10]  S. Lane Categories for the Working Mathematician , 1971 .

[11]  Generic predictions of quantum theories of gravity , 2006, hep-th/0605052.

[12]  C. Isham,et al.  Spacetime and the Philosophical Challenge of Quantum Gravity , 2001 .

[13]  Hans F. de Groote On a canonical lattice structure on the effect algebra of a von Neumann algebra , 2004 .

[14]  C. J. Isham,et al.  Topos Perspective on the Kochen=nSpeckerTheorem: III. Von Neumann Algebras as theBase Category , 1999 .

[15]  Fotini Markopoulou The Internal Description of a Causal Set:¶What the Universe Looks Like from the Inside , 2000 .

[16]  Andreas Doering,et al.  Topos Theory and ‘Neo-Realist’ Quantum Theory , 2009 .

[17]  J. Corbett,et al.  Collimation processes in quantum mechanics interpreted in quantum real numbers , 2009 .

[18]  Is it True; or is it False; or Somewhere in Between? The Logic of Quantum Theory , 2005 .

[19]  Observables as functions: Antonymous functions , 2005, quant-ph/0510102.

[20]  A. Connes,et al.  Background independent geometry and Hopf cyclic cohomology , 2005, math/0505475.

[21]  C. J. Isham,et al.  A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory , 2008 .

[22]  An Introduction to spin foam models of quantum gravity and BF theory , 1999, gr-qc/9905087.

[23]  A. Grayling An introduction to philosophical logic , 1982 .

[24]  S. Vickers Topology via Logic , 1989 .

[25]  M. L. Dalla Chiara,et al.  Quantum Logic , 2001 .

[26]  A. Kock Synthetic Differential Geometry , 1981 .

[27]  P. Johnstone Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .

[28]  Higher gauge theory , 2005, math/0511710.

[29]  M. Stone The theory of representations for Boolean algebras , 1936 .

[30]  Isar Stubbe The Canonical Topology on a Meet-Semilattice , 2005 .

[31]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[32]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive Gelfand-Mazur theorem , 2000 .

[33]  R. Goldblatt Topoi, the Categorial Analysis of Logic , 1979 .

[34]  M. Smyth Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.

[35]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[36]  L. Crane What is the Mathematical Structure of Quantum Spacetime , 2007, 0706.4452.

[37]  Andreas Döring Kochen–Specker Theorem for von Neumann Algebras , 2005 .

[38]  H. Margenau Reality in Quantum Mechanics , 1949, Philosophia Scientiæ.

[39]  Rafael D. Sorkin Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School) , 2003 .

[40]  Milton Philip Olson,et al.  The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice , 1971 .

[41]  Bas Spitters,et al.  A Topos for Algebraic Quantum Theory , 2007, 0709.4364.

[42]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[43]  Masanao Ozawa Transfer principle in quantum set theory , 2007, J. Symb. Log..

[44]  Bernhard Banaschewski,et al.  A constructive proof of the Stone-Weierstrass theorem , 1997 .

[45]  F. William Lawvere,et al.  Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .

[46]  Matthew Tobias Jackson,et al.  A SHEAF THEORETIC APPROACH TO MEASURE THEORY , 2006 .

[47]  W. Heisenberg,et al.  Philosophic Problems Of Nuclear Science , 1952 .

[48]  Mendel Sachs,et al.  Quantum Theory and the Schism in Physics , 1985 .

[49]  C. J. Isham,et al.  Topos Perspective on the Kochen–Specker Theorem: IV. Interval Valuations , 2001 .

[50]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[51]  Andreas Doering The physical interpretation of daseinisation , 2010 .

[52]  P. Johnstone,et al.  REVIEWS-Sketches of an elephant: A topos theory compendium , 2003 .

[53]  L. Smolin The case for background independence , 2005, hep-th/0507235.

[54]  E. Beltrametti,et al.  Bericht: On the Logic of Quantum Mechanics , 1973 .

[55]  Kunji Nakayama Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics , 2007, 0711.2200.

[56]  C. J. Isham,et al.  A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .

[57]  C. J. Isham,et al.  Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.

[58]  C. J. Isham Topos theory and consistent histories: The internal logic of the set of all consistent sets , 1996 .

[59]  Gaisi Takeuti,et al.  Quantum Set Theory , 1981 .

[60]  Bernhard Banaschewski,et al.  A globalisation of the Gelfand duality theorem , 2006, Ann. Pure Appl. Log..

[61]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[62]  Alain Connes,et al.  Noncommutative geometry , 1994 .

[63]  C. Isham,et al.  Some Possible Roles for Topos Theory in Quantum Theory and Quantum Gravity , 1999, gr-qc/9910005.

[64]  Fay Dowker Causal sets and the deep structure of spacetime , 2005 .

[65]  C. J. Isham Some Reflections on the Status of Conventional Quantum Theory when Applied to Quantum Gravity , 2002 .

[66]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[67]  Steven Vickers Issues of Logic, Algebra and Topology in Ontology , 2010 .

[68]  C. J. Isham,et al.  Quantum logic and the histories approach to quantum theory , 1993 .

[69]  A. Mallios Modern differential geometry in gauge theories , 2006 .

[70]  John L. Bell,et al.  Toposes and local set theories - an introduction , 1988 .

[71]  Bernhard Banaschewski,et al.  The spectral theory of commutative C*-algebras: The constructive spectrum , 2000 .

[72]  Topos-theoretic Relativization of Physical Representability and Quantum Gravity , 2006, gr-qc/0610113.

[73]  C. J. Isham,et al.  A Topos Foundation for Theories of Physics: IV. Categories of Systems , 2008 .