“What is a Thing?”: Topos Theory in the Foundations of Physics
暂无分享,去创建一个
[1] A sheaf model for intuitionistic quantum mechanics , 1995, Appl. Categorical Struct..
[2] Observables I: Stone Spectra , 2005, math-ph/0509020.
[3] F. W. Lawvere,et al. Sets for Mathematics , 2003 .
[4] J. Baez. Quantum Quandaries: a Category-Theoretic Perspective , 2004, quant-ph/0404040.
[5] Karl Svozil,et al. Quantum Logic , 1998, Discrete mathematics and theoretical computer science.
[6] Martín Hötzel Escardó,et al. PCF extended with real numbers : a domain-theoretic approach to higher-order exact real number computation , 1997 .
[7] Observables II : Quantum Observables , 2005, math-ph/0509075.
[8] Bob Coecke. Quantum Logic in Intuitionistic Perspective , 2002, Stud Logica.
[9] C. J. Isham,et al. A topos foundation for theories of physics: I. Formal languages for physics , 2007 .
[10] S. Lane. Categories for the Working Mathematician , 1971 .
[11] Generic predictions of quantum theories of gravity , 2006, hep-th/0605052.
[12] C. Isham,et al. Spacetime and the Philosophical Challenge of Quantum Gravity , 2001 .
[13] Hans F. de Groote. On a canonical lattice structure on the effect algebra of a von Neumann algebra , 2004 .
[14] C. J. Isham,et al. Topos Perspective on the Kochen=nSpeckerTheorem: III. Von Neumann Algebras as theBase Category , 1999 .
[15] Fotini Markopoulou. The Internal Description of a Causal Set:¶What the Universe Looks Like from the Inside , 2000 .
[16] Andreas Doering,et al. Topos Theory and ‘Neo-Realist’ Quantum Theory , 2009 .
[17] J. Corbett,et al. Collimation processes in quantum mechanics interpreted in quantum real numbers , 2009 .
[18] Is it True; or is it False; or Somewhere in Between? The Logic of Quantum Theory , 2005 .
[19] Observables as functions: Antonymous functions , 2005, quant-ph/0510102.
[20] A. Connes,et al. Background independent geometry and Hopf cyclic cohomology , 2005, math/0505475.
[21] C. J. Isham,et al. A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory , 2008 .
[22] An Introduction to spin foam models of quantum gravity and BF theory , 1999, gr-qc/9905087.
[23] A. Grayling. An introduction to philosophical logic , 1982 .
[24] S. Vickers. Topology via Logic , 1989 .
[25] M. L. Dalla Chiara,et al. Quantum Logic , 2001 .
[26] A. Kock. Synthetic Differential Geometry , 1981 .
[27] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium Volume 1 , 2002 .
[28] Higher gauge theory , 2005, math/0511710.
[29] M. Stone. The theory of representations for Boolean algebras , 1936 .
[30] Isar Stubbe. The Canonical Topology on a Meet-Semilattice , 2005 .
[31] R. Kadison,et al. Fundamentals of the Theory of Operator Algebras , 1983 .
[32] Bernhard Banaschewski,et al. The spectral theory of commutative C*-algebras: The constructive Gelfand-Mazur theorem , 2000 .
[33] R. Goldblatt. Topoi, the Categorial Analysis of Logic , 1979 .
[34] M. Smyth. Power Domains and Predicate Transformers: A Topological View , 1983, ICALP.
[35] J. Bell. On the Problem of Hidden Variables in Quantum Mechanics , 1966 .
[36] L. Crane. What is the Mathematical Structure of Quantum Spacetime , 2007, 0706.4452.
[37] Andreas Döring. Kochen–Specker Theorem for von Neumann Algebras , 2005 .
[38] H. Margenau. Reality in Quantum Mechanics , 1949, Philosophia Scientiæ.
[39] Rafael D. Sorkin. Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School) , 2003 .
[40] Milton Philip Olson,et al. The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice , 1971 .
[41] Bas Spitters,et al. A Topos for Algebraic Quantum Theory , 2007, 0709.4364.
[42] Law Fw. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .
[43] Masanao Ozawa. Transfer principle in quantum set theory , 2007, J. Symb. Log..
[44] Bernhard Banaschewski,et al. A constructive proof of the Stone-Weierstrass theorem , 1997 .
[45] F. William Lawvere,et al. Toward the description in a smooth topos of the dynamically possible motions and deformations of a continuous body , 1980 .
[46] Matthew Tobias Jackson,et al. A SHEAF THEORETIC APPROACH TO MEASURE THEORY , 2006 .
[47] W. Heisenberg,et al. Philosophic Problems Of Nuclear Science , 1952 .
[48] Mendel Sachs,et al. Quantum Theory and the Schism in Physics , 1985 .
[49] C. J. Isham,et al. Topos Perspective on the Kochen–Specker Theorem: IV. Interval Valuations , 2001 .
[50] I. Moerdijk,et al. Sheaves in geometry and logic: a first introduction to topos theory , 1992 .
[51] Andreas Doering. The physical interpretation of daseinisation , 2010 .
[52] P. Johnstone,et al. REVIEWS-Sketches of an elephant: A topos theory compendium , 2003 .
[53] L. Smolin. The case for background independence , 2005, hep-th/0507235.
[54] E. Beltrametti,et al. Bericht: On the Logic of Quantum Mechanics , 1973 .
[55] Kunji Nakayama. Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics , 2007, 0711.2200.
[56] C. J. Isham,et al. A Topos Perspective on the Kochen-Specker Theorem II. Conceptual Aspects and Classical Analogues , 1998 .
[57] C. J. Isham,et al. Topos Perspective on the Kochen-Specker Theorem: I. Quantum States as Generalized Valuations , 1998, quant-ph/9803055.
[58] C. J. Isham. Topos theory and consistent histories: The internal logic of the set of all consistent sets , 1996 .
[59] Gaisi Takeuti,et al. Quantum Set Theory , 1981 .
[60] Bernhard Banaschewski,et al. A globalisation of the Gelfand duality theorem , 2006, Ann. Pure Appl. Log..
[61] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[62] Alain Connes,et al. Noncommutative geometry , 1994 .
[63] C. Isham,et al. Some Possible Roles for Topos Theory in Quantum Theory and Quantum Gravity , 1999, gr-qc/9910005.
[64] Fay Dowker. Causal sets and the deep structure of spacetime , 2005 .
[65] C. J. Isham. Some Reflections on the Status of Conventional Quantum Theory when Applied to Quantum Gravity , 2002 .
[66] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[67] Steven Vickers. Issues of Logic, Algebra and Topology in Ontology , 2010 .
[68] C. J. Isham,et al. Quantum logic and the histories approach to quantum theory , 1993 .
[69] A. Mallios. Modern differential geometry in gauge theories , 2006 .
[70] John L. Bell,et al. Toposes and local set theories - an introduction , 1988 .
[71] Bernhard Banaschewski,et al. The spectral theory of commutative C*-algebras: The constructive spectrum , 2000 .
[72] Topos-theoretic Relativization of Physical Representability and Quantum Gravity , 2006, gr-qc/0610113.
[73] C. J. Isham,et al. A Topos Foundation for Theories of Physics: IV. Categories of Systems , 2008 .