A General Nogood-Learning Framework for Pseudo-Boolean Multi-Valued SAT
暂无分享,去创建一个
[1] Matthew L. Ginsberg,et al. Generalizing Boolean Satisfiability I: Background and Survey of Existing Work , 2011, J. Artif. Intell. Res..
[2] Milind Dawande,et al. A Class of Hard Small 0-1 Programs , 1998, INFORMS J. Comput..
[3] Niklas Een,et al. MiniSat v1.13 - A SAT Solver with Conflict-Clause Minimization , 2005 .
[4] Peter J. Stuckey,et al. Propagation = Lazy Clause Generation , 2007, CP.
[5] E DixonHeidi,et al. Generalizing Boolean satisfiability II , 2004 .
[6] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[7] Cesare Tinelli,et al. Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.
[8] Pascal Van Hentenryck,et al. Length-Lex Ordering for Set CSPs , 2006, AAAI.
[9] Tobias Achterberg,et al. SCIP - a framework to integrate Constraint and Mixed Integer Programming , 2004 .
[10] Carlos Ansótegui,et al. Disco - Novo - GoGo: Integrating Local Search and Complete Search with Restarts , 2006, AAAI.
[11] Meinolf Sellmann,et al. A Complete Multi-valued SAT Solver , 2010, CP.
[12] Barry O'Sullivan,et al. Constraint Programming and Combinatorial Optimisation in Numberjack , 2010, CPAIOR.
[13] D. Shmoys,et al. Completing Quasigroups or Latin Squares: A Structured Graph Coloring Problem , 2002 .