Tetrahedralization of Isosurfaces with Guaranteed-Quality by Edge Rearrangement (TIGER)

We present a method for generating three-dimensional (3-D) unstructured tetrahedral meshes of solids whose boundary is a smooth surface. The method uses a background grid (body-centered-cubic (BCC) lattice) from which to build the final conforming 3-D mesh. The algorithm is fast and robust and provides useful guaranteed dihedral angle bounds for the output tetrahedra. The dihedral angles are bounded between $8.5^\circ$ and $164.2^\circ$. If the lattice spacing is smaller than the “local feature size,” then the dihedral angles are between $11.4^\circ$ and $157.6^\circ$ (cf. Labelle and Shewchuk [SIGGRAPH '07, ACM, New York, 2007]). The method is simple to implement and performs no extra refinement of the background grid. The most complicated mesh transformations are 4-4 edge flips. Moreover, the only parameter in the method is the BCC lattice spacing. If the surface has bounded curvature and if the background grid is sufficiently fine, then the boundary of the output mesh is guaranteed to be a geometricall...

[1]  Francisco Ortin,et al.  Marching Octahedra , 2009, CEIG.

[2]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[3]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[4]  Ronald Fedkiw,et al.  Adaptive physics based tetrahedral mesh generation using level sets , 2005, Engineering with Computers.

[5]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[6]  Alexander Fuchs Automatic Grid Generation with Almost Regular Delaunay Tetrahedra , 1998, IMR.

[7]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.

[8]  Rainer Mlitz Radicals and semisimple classes of Ω-groups , 1980 .

[9]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[10]  Yingying Yao,et al.  Robust mesh regeneration based on structural deformation analysis for 3D shape optimization of electromagnetic devices , 2003, Sixth International Conference on Electrical Machines and Systems, 2003. ICEMS 2003..

[11]  M. Yvinec,et al.  Meshing Volumes Bounded by Smooth Surfaces , 2005, IMR.

[12]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  Vadim Shapiro,et al.  Implicit functions with guaranteed differential properties , 1999, SMA '99.

[15]  Alexander A. Pasko,et al.  Dynamic meshes for accurate polygonization of implicit surfaces with sharp features , 2001, Proceedings International Conference on Shape Modeling and Applications.

[16]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[17]  J. Shewchuk,et al.  Tetrahedral mesh generation with good dihedral angles using point lattices , 2007 .

[18]  Heinrich Müller,et al.  Visualization of Implicit Surfaces Using Adaptive Tetrahedrizations , 1997, Scientific Visualization Conference (dagstuhl '97).

[19]  Herbert Edelsbrunner,et al.  An Experimental Study of Sliver Exudation , 2002, Engineering with Computers.

[20]  Scott A. Mitchell,et al.  Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..

[21]  G. W. Stewart,et al.  Afternotes on numerical analysis , 1987 .

[22]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[23]  Joachim Sch NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[24]  Rafael Montenegro,et al.  Efficient Strategies for Adaptive 3-D Mesh Generation Over Complex Orography , 2002, Neural Parallel Sci. Comput..

[25]  Xiang-Yang Li,et al.  Generating well-shaped Delaunay meshed in 3D , 2001, SODA '01.

[26]  Long Chen,et al.  Mesh Smoothing Schemes Based on Optimal Delaunay Triangulations , 2004, IMR.

[27]  J. Maddocks,et al.  Global curvature, thickness, and the ideal shapes of knots. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[29]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[30]  G. Burton Sobolev Spaces , 2013 .

[31]  Alper Üngör,et al.  Tiling 3d euclidean space with acute tetrahedra , 2001, CCCG.

[32]  David Eppstein,et al.  Tiling space and slabs with acute tetrahedra , 2003, Comput. Geom..

[33]  Hui Huang,et al.  Surface Mesh Smoothing, Regularization, and Feature Detection , 2008, SIAM J. Sci. Comput..

[34]  L. R. Scott,et al.  On the conditioning of finite element equations with highly refined meshes , 1989 .

[35]  J. M. Escobar,et al.  An algebraic method for smoothing surface triangulations on a local parametric space , 2006 .

[36]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[37]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[38]  Thomas Theußl,et al.  Isosurfaces on Optimal Regular Samples , 2003, VisSym.

[39]  L. Paul Chew,et al.  Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.

[40]  Tamal K. Dey,et al.  Quality meshing with weighted Delaunay refinement , 2002, SODA '02.

[41]  D. Naylor Filling space with tetrahedra , 1999 .

[42]  S. Sutharshana,et al.  Automatic three-dimensional mesh generation by the modified-octree technique: Yerry M A and Shepard, M SInt. J. Numer. Methods Eng. Vol 20 (1984) pp 1965–1990 , 1985 .

[43]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[44]  Brenda S. Baker,et al.  Nonobtuse triangulation of polygons , 1988, Discret. Comput. Geom..

[45]  Thomas Ertl,et al.  The multilevel finite element method for adaptive mesh optimization and visualization of volume data , 1997 .

[46]  J. Bey,et al.  Tetrahedral grid refinement , 1995, Computing.

[47]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[48]  Per-Olof Persson,et al.  Mesh size functions for implicit geometries and PDE-based gradient limiting , 2006, Engineering with Computers.

[49]  O. Gonzalez,et al.  Global curvature and self-contact of nonlinearly elastic curves and rods , 2002 .

[50]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000 .

[51]  J. Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, SIGGRAPH 2007.

[52]  LongChen,et al.  OPTIMAL DELAUNAY TRIANGULATIONS , 2004 .

[53]  Yiannis Ventikos,et al.  Local remeshing for large amplitude grid deformations , 2008, J. Comput. Phys..

[54]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[55]  J. M. Cascón,et al.  An automatic strategy for adaptive tetrahedral mesh generation , 2009 .

[56]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[57]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[58]  Andrew P. Kuprat,et al.  An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data , 2009, J. Comput. Phys..

[59]  Paul Ning,et al.  An evaluation of implicit surface tilers , 1993, IEEE Computer Graphics and Applications.

[60]  Yutaka Ohtake,et al.  Polyhedral surface smoothing with simultaneous mesh regularization , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[61]  Yutaka Ohtake,et al.  Dual/Primal mesh optimization for polygonized implicit surfaces , 2002, SMA '02.

[62]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.