Generating high quality pan-shots from motion blurred videos

Abstract In this paper, we demonstrate a method to generate a pan photo from a video captured using a hand-held camera. We handle three relevant scenarios (no blur, only foreground blurred, both foreground and background blurred) that arise while capturing a video with a fixed frame-rate and under different relative object velocities and camera motion. Our method first segments out the moving object by motion compensation of the background and then estimates the inter-frame velocity and relative depth of the object. Automatic gradient-based identification is then performed to classify the video into one of the above three scenarios. If only the foreground is blurred, we perform non-blind restoration by judiciously harnessing the background motion and foreground velocity to estimate the foreground blur. When the background is blurred too, a blind multi-frame deblurring approach is advocated to get the background motion which is used to infer the foreground blur to obtain the latent frames. Once clean frames are obtained, we align the object and rewarp the background with respect to the net displacement of the object in each frame which when averaged produces the required realistic pan-photo. We demonstrate our method on a number of videos captured using different consumer cameras as well as on videos downloaded from the Internet.

[1]  Tae Hyun Kim,et al.  Generalized video deblurring for dynamic scenes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[3]  Ankit Gupta,et al.  Single Image Deblurring Using Motion Density Functions , 2010, ECCV.

[4]  Ying Wu,et al.  Removing partial blur in a single image , 2009, CVPR.

[5]  Dani Lischinski,et al.  A Closed-Form Solution to Natural Image Matting , 2008 .

[6]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, SIGGRAPH 2008.

[7]  Tae Hyun Kim,et al.  Dynamic Scene Deblurring , 2013, 2013 IEEE International Conference on Computer Vision.

[8]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[9]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Luc Van Gool,et al.  Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Nahum Kiryati,et al.  Variational Pairing of Image Segmentation and Blind Restoration , 2004, ECCV.

[12]  Allen R. Hanson,et al.  Coherent Motion Segmentation in Moving Camera Videos Using Optical Flow Orientations , 2013, 2013 IEEE International Conference on Computer Vision.

[13]  Shuiwang Ji,et al.  SLEP: Sparse Learning with Efficient Projections , 2011 .

[14]  Michael J. Black,et al.  Modeling Blurred Video with Layers , 2014, ECCV.

[15]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[16]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Jan Flusser,et al.  Multichannel blind deconvolution of spatially misaligned images , 2005, IEEE Transactions on Image Processing.

[18]  Enhua Wu,et al.  Handling motion blur in multi-frame super-resolution , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Yoichi Sato,et al.  Video Segmentation with Motion Smoothness , 2010 .

[20]  Guillermo Sapiro,et al.  Deep Video Deblurring for Hand-Held Cameras , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Vladimir Kolmogorov,et al.  An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Yasuyuki Matsushita,et al.  Removing Non-Uniform Motion Blur from Images , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[24]  Michael S. Brown,et al.  Richardson-Lucy Deblurring for Scenes under a Projective Motion Path , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[26]  Tae Hyun Kim,et al.  Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  A. N. Rajagopalan,et al.  Shape from Sharp and Motion-Blurred Image Pair , 2014, International Journal of Computer Vision.

[29]  Tae Hyun Kim,et al.  Segmentation-Free Dynamic Scene Deblurring , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Guillermo Sapiro,et al.  A Variational Framework for Simultaneous Motion Estimation and Restoration of Motion-Blurred Video , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[31]  Guillermo Sapiro,et al.  Burst deblurring: Removing camera shake through fourier burst accumulation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Frédo Durand,et al.  Understanding Blind Deconvolution Algorithms , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Daniel P. Huttenlocher,et al.  Generating sharp panoramas from motion-blurred videos , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, SIGGRAPH 2007.

[35]  Anat Levin,et al.  Blind Motion Deblurring Using Image Statistics , 2006, NIPS.

[36]  Montse Pardàs,et al.  Segmentation and tracking of static and moving objects in video surveillance scenarios , 2008, 2008 15th IEEE International Conference on Image Processing.

[37]  Ping Tan,et al.  TrackCam: 3D-aware tracking shots from consumer video , 2014, ACM Trans. Graph..

[38]  Jian Sun,et al.  Video object cut and paste , 2005, SIGGRAPH 2005.

[39]  Hua Huang,et al.  Bundled Kernels for Nonuniform Blind Video Deblurring , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[40]  Bernhard Schölkopf,et al.  Online Video Deblurring via Dynamic Temporal Blending Network , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[41]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2012, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Seungyong Lee,et al.  Video deblurring for hand-held cameras using patch-based synthesis , 2012, ACM Trans. Graph..

[43]  Guna Seetharaman,et al.  Blind restoration of aerial imagery degraded by spatially varying motion blur , 2014, Defense + Security Symposium.

[44]  Deqing Sun,et al.  Blind Image Deblurring Using Dark Channel Prior , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[45]  Feng Liu,et al.  Learning color and locality cues for moving object detection and segmentation , 2009, CVPR.