Image Description Using Scale-Space Edge Pixel Directions Histogram

Edge directions histograms are widely used as an image descriptor for image retrieval and recognition applications. Edges represent textures and are also representative of the image shapes. In this work a histogram of the edge pixel directions is defined for image description. The edges detected with the canny algorithm will be described in two different scales in four directions. In the lower scale the image is divided into 16 sub-images, and a descriptor with 64 bins results. In the higher scale, as no image division is done because only the most important image features will be present, 4 bins result. A total of 68 bins are used to describe the image in scale-space. Images will be compared using the Euclidean distance between histograms. The provided results will be compared with the ones that result from the use of the histogram in the low scale only. Improved classification using the nearest class mean and neural networks will be used. A higher level semantic annotation, based on this low level descriptor that results from the multiscale image analysis, will be extracted.

[1]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[2]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[3]  David G. Stork,et al.  Pattern Classification , 1973 .

[4]  MAGDALINI EIRINAKI,et al.  Web mining for web personalization , 2003, TOIT.

[5]  Moncef Gabbouj,et al.  Multi-Scale Edge Detection and Object Extraction for Image Retrieval , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[6]  Alberto Del Bimbo,et al.  Taking into Consideration Sports Semantic Annotation of Sports Videos Content-based Multimedia Indexing and Retrieval , 2002 .

[7]  Irena Koprinska,et al.  Temporal video segmentation: A survey , 2001, Signal Process. Image Commun..

[8]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  António M. G. Pinheiro Edge Pixel Histograms Characterization with Neural Networks for an Improved Semantic Description , 2007, Eighth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '07).

[10]  Wei-Ying Ma,et al.  Ubiquitous media agents: a framework for managing personally accumulated multimedia files , 2003, Multimedia Systems.

[11]  John R. Smith,et al.  Using MPEG-7 and MPEG-21 for personalizing video , 2004, IEEE MultiMedia.

[12]  Yoshifumi Nishio,et al.  Competing Behavior of Two Kinds of Self-Organizing Maps and Its Application to Clustering , 2007, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[13]  Jake K. Aggarwal,et al.  Image retrieval via isotropic and anisotropic mappings , 2001, Pattern Recognit..

[14]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[15]  Fernando Pereira,et al.  MPEG-7 the generic multimedia content description standard, part 1 - Multimedia, IEEE , 2001 .

[16]  Shehzad Khalid,et al.  Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space , 2006, Multimedia Systems.

[17]  Joshua R. Smith,et al.  Metadata-driven multimedia access , 2003, IEEE Signal Process. Mag..

[18]  Giorgos B. Stamou,et al.  Towards a context aware mining of user interests for consumption of multimedia documents , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[19]  Miroslaw Bober,et al.  MPEG-7 visual shape descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[20]  Wolf-Tilo Balke,et al.  Personalized Digital Item Adaptation in Service-Oriented Environments , 2006, 2006 First International Workshop on Semantic Media Adaptation and Personalization (SMAP'06).

[21]  José M. Martínez Standards - MPEG-7 overview of MPEG-7 description tools, part 2 , 2002 .

[22]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[23]  Peter J. L. van Beek,et al.  Content-based filtering and personalization using structured metadata , 2002, JCDL '02.

[24]  Raphaël Troncy,et al.  Integrating Structure and Semantics into Audio-visual Documents , 2003, SEMWEB.

[25]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Marios C. Angelides,et al.  An MPEG-7 scheme for semantic content modelling and filtering of digital video , 2006, Multimedia Systems.

[27]  Cécile Roisin,et al.  A Multimedia Model Based on Structured Media and Sub-Elements for Complex Multimedia Authoring and Presentation , 2002, Int. J. Softw. Eng. Knowl. Eng..

[28]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[29]  S. Sitharama Iyengar,et al.  Adaptive neural network clustering of Web users , 2004, Computer.

[30]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.